Мечта Эйнштейна. В поисках единой теории строения
Шрифт:
Короче говоря, в природе имеются две фундаментальные сущности – частицы и поля – и нас интересует, как они взаимодействуют. Именно этому посвящена квантовая теория поля. Первая попытка рассмотреть взаимодействия с квантовой точки зрения была предпринята вскоре после создания (в 1926 году) квантовой механики. И тут же возникли трудности – в теории 1926 года можно было квантовать частицы, но не поля.
Первая теория, допускавшая квантование как полей, так и частиц, была создана в 1927 году Полем Дираком. Он показал, как описать испускание и поглощение фотонов частицами с точки зрения квантовой механики. Но его теория позволяла преодолеть не все трудности – она относилась только к нерелятивистским частицам, а как известно, многие частицы движутся в ходе взаимодействий со скоростями, близкими к световым. Поэтому нужна была релятивистская теория.
И снова отличился Дирак. Он подставил вместо нерелятивистского релятивистское выражение для энергии и вывел уравнение движения. Вскоре он обнаружил, что его уравнение можно применять только к частицам с определённым спином. Известно, что спин элементарных частиц не может иметь произвольное значение; согласно квантовой теории, он квантован и, следовательно, имеет строго определённые значения. Спин электрона, например, принимает только два значения: +1/2 (часто спин +1/2 называют спином, направленным вверх, а спин -1/2 – направленным вниз). Теория Дирака применима только к частицам со спином 1/2, т.е. это теория электрона. Она была первой из всех теорий, которая в явном виде предсказывала наличие у частиц спина. Но что ещё важнее, она легла в основу теории взаимодействия света и элементарных частиц.
Теория была удачной, хотя разрешала не все трудности. Из неё следовало, что электрон может пребывать в любом из четырёх состояний: иметь один из двух возможных спинов и одно из двух энергетических состояний – с положительной и отрицательной энергиями. Трудность вызывали состояния с отрицательной энергией. Если бы они действительно существовали, атомы были бы нестабильны. Чтобы понять, почему, достаточно обратиться к рисунку, на котором показано, какую энергию может иметь электрон, – это схема энергетических уровней. Согласно теории, на каждом уровне могут находиться только два электрона с разными спинами, и если ниже этого уровня есть вакансия, то её займёт один из электронов; при этом произойдёт испускание фотона.
Ясно, что самый высокий уровень с отрицательной энергией будет всегда ниже самого низкого уровня с положительной энергией, вследствие чего между этими уровнями становится возможным переход с испусканием фотона. Это означает, что любой электрон сможет без ограничений спускаться вниз по лестнице энергетических уровней, испуская фотон на каждой ступеньке. Иными словами, электроны в атоме станут нестабильными, и атомы не смогут существовать.
Некоторые учёные пытались преодолеть трудность с отрицательной энергией, но удалось это тому же Дираку. В 1929 году он опубликовал статью, в которой постулировал существование «моря» состояний с отрицательной энергией. Таким образом, для других электронов места среди них уже не было. Коллеги отнеслись к этой идее весьма скептически: никто никогда не наблюдал такого «моря», а ведь оно должно было бы окружать нас со всех сторон. Возражения скептиков не подействовали на Дирака, но сама идея не давала ему покоя. Переходы из состояния с положительной в состояние с отрицательной энергией запрещались, но оставалась возможность обратного перехода из «моря» отрицательных энергий к положительным. Как это может выглядеть?
Схема энергетических уровней. Уровни, расположенные выше горизонтальной линии, имеют положительную энергию, а ниже – отрицательную. Чёрные кружки соответствуют электронам. Справа показано образование пары электрон-позитрон
Очевидно, такой переход может происходить только тогда, когда принадлежащему к «морю» электрону сообщается достаточная положительная энергия, причём расчёты показали, что эта энергия не так уж велика, т.е. такое явление в принципе наблюдаемо. Выглядеть оно будет так, как если бы электрон, перешедший в состояние с положительной энергией, оставил после себя «дырку», и эту «дырку» можно наблюдать. Она будет в точности такой же, как электрон, за исключением заряда – в данном случае не отрицательного, а положительного. Единственной известной в то время положительно заряженной частицей был протон, и Дирак полагал, что «дырка» и есть протон. Однако Оппенгеймер указал, что протон на эту роль не годится, так как он гораздо массивнее, чем требуется для того, чтобы атом оставался стабильным.
А как выглядит процесс образования «дырки»? Так, словно в какой-то точке пространства внезапно появляются обычный и положительно заряженный электроны, – сейчас такой процесс называют рождением пары. Обе частицы появляются одновременно, и их можно наблюдать в течение непродолжительного времени.
Несколько лет спустя такой процесс действительно
Если электрону соответствуют частица с противоположным зарядом – его антипод, естественно, возникает вопрос, а как обстоит дело с другими частицами? Оказалось, что античастицы есть у всех частиц. Правда, обнаружения антипротона пришлось ждать целых 25 лет, так как для его образования требуется гораздо большая энергия, чем для образования позитрона.
Уравнение Дирака дало нам очень много – оно изменило наши представления о Вселенной. Когда-то считалось, что вакуум заполнен эфиром – загадочной субстанцией, необходимой для распространения света. Но после появления специальной теории относительности Эйнштейна оказалось, что эфир не нужен и вакуум опустел. Согласно же теории Дирака, вакуум вновь получил наполнение в том смысле, что из него, при наличии достаточной энергии, могут рождаться пары частиц самых разных типов. Всё пространство оказывается заполненным частицами, а значит, его структура гораздо сложнее, чем представлялось раньше.
Дирак не меньше других был поражён предсказательной силой своего уравнения. Однажды он заметил: «Уравнение гораздо умнее автора». Сейчас уравнение Дирака лежит в основе теории взаимодействия электронов и протонов, осуществляемого при помощи фотонов. Эта теория носит название квантовой электродинамики. Она близка к совершенству и позволяет выполнять расчёты с очень высокой степенью точности.
Несмотря на успех теории Дирака, многих учёных по-прежнему беспокоит бесконечное «море» электронов с отрицательной энергией. Дирак же считал это совершенно естественным и не видел причин для беспокойства. Нужно подчеркнуть, что подход Дирака – это лишь одна из возможных интерпретаций наблюдений. В лаборатории никогда не фиксируется отсутствие электрона с отрицательной энергией; всё, что мы видим, – это позитрон.
Фейнмановская диаграмма взаимодействия двух электронов. Между ними происходит обмен фотоном
Позже появились другие бесконечности, по сравнению с которыми «море» электронов с отрицательной энергией – сущие пустяки. Чтобы показать, откуда берутся бесконечности, посмотрим, как работает теория поля (здесь мы ограничимся только квантовой электродинамикой, теорией электромагнитного поля). Она основана на так называемой теории возмущений. В теории возмущений рассматриваются взаимодействия разных порядков – первого, второго и т.д. Наибольший вклад вносят вычисления взаимодействий первого порядка, затем учитывается вклад второго и последующего порядков; по крайней мере, так предполагалось. Но когда были проделаны первые вычисления, оказалось, что их результаты хорошо совпадают с экспериментом, и нет нужды использовать более высокие порядки, так как это усложняет расчёты. Тем не менее Оппенгеймер и Уоллер однажды провели вычисления в более высоких порядках и обнаружили нечто странное. В итоге, вместо небольшой поправки к результату вычислений в первом порядке они получили бесконечность. Уоллер рассказал об этом одному из ведущих физиков того времени – Паули, но тот не поверил услышанному. Он считал, что такого просто не может быть и где-то допущена ошибка.
Попробуем разобраться, чем объяснялась такая уверенность Паули. Рассмотрим, например, соударение двух электронов; его можно изобразить так, как показано выше. Точка, в которой происходит обмен фотонами, называется вершиной. Каждой такой точке соответствует так называемая константа связи. В случае вычислений первого порядка в квантовой электродинамике константа связи равна 1/137, в вычислениях второго порядка она имеет то же значение, и результат поэтому должен был бы быть в 1/137 раз меньше, чем для первого порядка. Однако Оппенгеймер и Уоллер показали, что это не так – они получили бесконечность. Вскоре оказалось, что трудности, по-видимому, были связаны с массой и зарядом частицы, а также с вакуумом.