Чтение онлайн

на главную - закладки

Жанры

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ
Шрифт:

В работе 2007 г. Р. Инглхар и К. Велзель предположили, что для установления и развития демократического режима необходим осознанный общественный запрос. Важно, чтобы демократия воспринималась не как инструмент достижения экономического процветания нации, а как способ обеспечения политических прав и свобод от принуждения и дискриминации. По мнению авторов, свобода объединяет такие категории, как «Равенство против патриархального уклада», «Толерантность против подчинения традиционным нормам», «Автономия против авторитета», «Выражение против спокойствия и обеспеченности». Для конструирования индекса ценности свободы были привлечены 14 переменных из «Всемирного исследования ценностей» в 90 странах. По каждому вопросу

были получены доли положительно ответивших от общего числа опрошенных в каждой стране. По каждой из четырех категорий были вычислены средние значения, а итоговое значение индекса ценности свободы было получено из четырех переменных методом факторного анализа [Inglehart, Welzel, 2009].

Другим важным инструментом многомерного статистического анализа является кластерный анализ. Его основное назначение состоит в разбиении множества исследуемых признаков на однородные в определенном смысле группы, когда объекты внутри одного кластера более похожи друг на друга, чем на объекты из других кластеров [Айвазян, Мхитарян, 2001, с. 484].

Методы кластерного анализа актуальны, когда возникает задача классификации в признаковом пространстве большой размерности, что естественно, ведь если признаков, которыми описываются объекты, всего два, то получить группировку можно с помощью визуализации данных на диаграмме рассеяния.

Являясь описательным методом статистики, кластерный анализ позволяет проанализировать внутренние связи между единицами в группах, он может быть особенно полезен при исследовании малоизученных явлений. С его помощью можно описать большой объем информации, выявить сходную динамику или структуру распределения показателей.

Существенным достоинством метода является отсутствие каких-либо допущений о характере распределения данных и априорной информации о числе групп. Все, что необходимо для реализации кластерного анализа – задать меру схожести объектов и правило объединения в кластеры. Несмотря на то, что многие методы кластерного анализа довольно просты, их активное использование стало возможным только с появлением необходимых вычислительных мощностей, потому что эффективное решение задачи поиска кластеров требует большого числа арифметических действий [Айвазян, Мхитарян, 2001, с. 484].

Различаются иерархические и итеративные методы кластеризации. Агломеративные иерархические методы предполагают последовательное объединение объектов в группы и групп между собой до тех пор, пока все объекты не окажутся в одном кластере. Дивизивные, наоборот, построены на последовательном разбиении одного кластера со всеми объектами на более малочисленные группы.

К итеративным методам кластерного анализа относится метод k– средних. В отличие от иерархических методов, он требует предварительного определения количества кластеров, которые будут сформированы. Смысл процедуры состоит в итерационном уточнении «центров тяжести» искомых классов и классификации наблюдений в соответствии с расстоянием до ближайшего «эталонного» центра. Но итеративные методы значительно более трудоемки с точки зрения вычислений и менее популярны.

Мерой схожести (однородности) обычно принимается величина, обратная расстоянию между объектами, ведь если объекты в многомерном пространстве находятся рядом, то разумно предположить, что они похожи друг на друга. Возможных мер расстояния между точками (объектами) i и j довольно много, вот только некоторые из них:

1) Евклидово,

,

2) квадрат Евклидова

,

3) расстояние

Манхеттен
,

где xi (1), xi (2), .., xi (m)m количественных признаков, которыми описываются объекты.

Если признаки измерены на категориальном уровне, тогда мерами схожести будут такие метрики, которые основаны на совпадении или несовпадении значений по каждому признаку [Ким, Мьюллер, Клекка, 1989, с. 161].

После объединения наиболее близких друг к другу точек в один кластер, в иерархических методах необходимо задать способ агломерации – правило сравнения и объединения единичных точек к кластерам или двух кластеров в один более крупный. Для этого используются метод ближнего соседа, метод дальнего соседа, центроидный метод и метод средней связи. По результатам некоторых исследований, лучшие результаты дают метод Варда и метод средней связи [Gore, 2000, p. 315].

Кластерный анализ позволяет получить относительно объективную классификацию единиц наблюдения, так как является формальным методом, но в зависимости от способа агломерации и смены метрики он может выдавать различные по составу группы при одинаковом числе кластеров. В каждом отдельном случае самым важным остается качество содержательной интерпретации полученных совокупностей объектов, но все-таки некоторые конвенциональные правила комбинации метрик и правил агломерации существуют [Gore, 2000, p. 309–312].

Совокупность описанных методов анализа данных позволяет решать наиболее типичные задачи политического анализа (а возможно, и социальных наук вообще) на основе количественных данных. Тем не менее за рамками нашего обзора остался широкий класс методов, изучение и описание которого требует достаточно свободного владения понятиями теории вероятностей и математической статистики, а также алгебраической геометрии. Речь идет, в первую очередь, о байесовском подходе к анализу данных, непараметрических методах, методах анализа пространственно-временных данных и временных рядов, а также нелинейных вариантах метода главных компонент, основанных на теории нелинейных многообразий.

Все описанные и оставленные без обзора методы прикладной статистики, однако, требуют для успешности использования привлечения способности исследователя интерпретировать как саму изучаемую реальность, так и полученные в ходе математической обработки результаты. Семиотика потенциально способна оказать практикующим исследователям большую помощь в этой области. Надеемся, что продемонстрированная в этом обзоре широта приложений статистики привлечет внимание специалистов по семиотике к прикладной статистике и будет способствовать сближению этих областей знания.

Литература

Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник для вузов. – М.: ЮНИТИ, 2001. – 1022 с.

Ахременко А.С. Политический анализ и прогнозирование. – М.: Гардарики, 2006. – 333 с.

Аптон Г. Анализ таблиц сопряженности / Пер. с англ. и пред. Ю.П. Адлера. – М.: Финансы и статистика, 1982. – 144 с.

Ким Дж.-О., Мьюллер Ч.У., Клекка У.Р. Факторный, дискриминантный и кластерный анализ. – М.: Финансы и статистика, 1989. – 215 с.

Поделиться:
Популярные книги

Птичка в академии, или Магистры тоже плачут

Цвик Катерина Александровна
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Птичка в академии, или Магистры тоже плачут

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Честное пионерское! Часть 1

Федин Андрей Анатольевич
1. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Честное пионерское! Часть 1

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора