Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Шрифт:

Именно так работают односторонние функции с потайным входом, которые легко применить в одном направлении, но практически невозможно — в обратном.

Схема, иллюстрирующая алгоритм Диффи — Хеллмана. Имеются два абонента, Алиса и Боб, желающие общаться втайне. Они открыто договариваются о двух числах (простое число р и другое число g, имеющие определенные свойства). И Алиса, и Боб выполняют

некоторые операции с этими числами и с еще одним целым числом, которое они держат в секрете, а затем открыто посылают друг другу результаты. Теперь и Алиса, и Боб выполняют с полученным результатом еще одну операцию и получают один и тот же ответ, который будет для них секретным кодом. Потенциальный шпион, перехвативший результаты, посланные Алисой и Бобом, не может сгенерировать секретный код, имея лишь эту информацию.

Предположим теперь, что вместо банок с краской в магазине находятся простые числа. Возьмем любые два, например, 7 и 13, и перемножим их (аналогично смешиванию краски). В результате мы получим 7 х 13 = 91.

Тогда возникает вопрос: можно ли узнать, какие простые числа были перемножены, чтобы в результате получилось 91? Для ответа на него надо взять список простых чисел и проделать несколько проверок. Казалось бы, простое решение, как и в случае определения цвета красок, если в магазине было всего около десятка основных цветов.

Но с простыми числами все намного сложнее.

Например, ни у кого не хватит терпения проверить, что число 1409 305 684 859 является результатом умножения простых чисел 705 967 и 1996 277, особенно если учесть, что эти два простых числа взяты из списка простых чисел между 1 и 2000000, а там таких «всего лишь» 148933. Однако мы живем в эпоху высоких технологий, и, конечно, эту задачу можно довольно быстро решить с помощью хорошей программы и мощного компьютера. Хотя все зависит от того, насколько большой этот магазин красок. Не следует также забывать, что количество простых чисел не просто очень большое, а бесконечное.

Пара простых чисел в приведенном выше примере содержит лишь несколько цифр. Если мы возьмем простые числа, каждое из которых содержит сотни цифр, то время, которое потребуется компьютерной программе на простой перебор всех возможных вариантов — метод «грубой силы», как говорят криптографы, — будет больше, чем предполагаемое время существования Земли.

Простые числа повсеместно используются в нашей повседневной жизни, например, в кредитных картах и персональных компьютерах, поэтому постоянно существует потребность в новых простых числах (чем больше, тем лучше) для генерации секретных кодов. Таким образом, имеется спрос на простые числа, но контроль качества так же важен, как и их производство. Чтобы большому числу присвоить статус простого, его должна проверить специальная организация.

Шифр RSA был опубликован в 1978 г., но повсеместно начал использоваться в качестве метода шифрования лишь в конце 1990 гг. в связи с ростом сети интернет. Поиск больших простых чисел прежде требовал специального программного обеспечения, которое, как правило, можно было купить лишь в специализированных фирмах или в университетах, занимающихся такими исследованиями. Однако экспоненциальный рост вычислительных мощностей и появление более совершенных алгоритмов изменили рынок простых чисел и сделали их гораздо более доступными.

* * *

RSA-129

В апреле 1994 г. шифр RSA-129 потерпел полное фиаско. Он был построен на числе, содержащем 129 цифр, о чем объявили авторы этой системы шифрования, предложив желающим

взломать его. Около 600 математиков с помощью 1600 добровольцев, найденных через интернет, работали над проблемой, и в конце концов им удалось разложить это число на множители. Однако было подсчитано, что если все компьютеры в мире будут работать параллельно, чтобы взломать код из 1024 цифр, им потребуется время, равное возрасту Вселенной (13,7 миллиарда лет). А теперь представьте себе, что в шифровании с открытым ключом используются числа, содержащие 128,1024 и даже 2048 цифр! Чем больше цифр использует система шифрования, тем устойчивее она к атакам, хотя это, конечно, замедляет процесс расшифровки.

* * *

Эпоха высоких технологий

Появление логарифмов позволило значительно сэкономить время при выполнении вычислений. Позже появились логарифмическая линейка и первые вычислительные машины, которые использовали вращающиеся цилиндры для выполнения операций сложения и умножения.

Тем не менее, именно компьютеры смогли делать вычисления, выходящие за пределы возможностей человеческого мозга. Машины могли даже имитировать дедуктивные рассуждения — одно из свойств математического мышления. В этот момент некоторые ученые почувствовали, что компьютеры достигли рубежа, к которому до сих пор ни одна машина не подходила. Был ли это правильный путь?

Экспоненциальный рост информационных технологий привел к изменению системы воззрений, сложившейся на протяжении веков. Начали появляться первые вычислительные алгоритмы, способные доказывать теоремы.

Противники компьютерных доказательств приводят два основных аргумента.

Во-первых, такие доказательства невозможно проверить, так как компьютерная программа содержит этапы, которые никакой математик никогда не сможет проконтролировать. Во-вторых, в процессе возможны ошибки из-за сбоев как в аппаратном, так и в программном обеспечении. В большинстве случаев эти ошибки случайны. Одним из способов предотвращения таких ошибок является использование различных программ на разных машинах (чтобы сравнить полученные результаты).

Но компьютеры могут работать только с кодами из единиц и нулей. Это накладывает некоторые ограничения, так как для чисел, которые не могут быть выражены в двоичной системе счисления, приходится использовать приближенные значения, что ведет к возможным ошибкам. В 1991 г. Дэвид Стаутмайер провел 18 экспериментов, доказав, что вычисления с помощью компьютерных программ могут дать неверные результаты.

Именно поэтому многие считают, что новые вычислительные методы исследований можно применять лишь в экспериментальной науке, а не в математике. Однако никто и не говорит, что в математике может быть использован лишь один метод.

Подсчитано, что у суперкомпьютера Cray на каждую тысячу часов работы приходится лишь одна ошибка.

«Традиционные» математические подходы тоже никогда не были свободны от ошибок. В ряде случаев неверные результаты считались правильными в течение многих

лет. Кроме того, в наши дни математика достигла такого высокого уровня разнообразия и сложности, что проверка доказательства теоремы может занять годы, или доказательство будет понятно в лучшем случае лишь нескольким специалистам.

Поделиться:
Популярные книги

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Дорога к счастью

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
6.11
рейтинг книги
Дорога к счастью

Восхождение Примарха 3

Дубов Дмитрий
3. Восхождение Примарха
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восхождение Примарха 3

Младший сын князя. Том 2

Ткачев Андрей Юрьевич
2. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 2

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4

Законник Российской Империи. Том 2

Ткачев Андрей Юрьевич
2. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
6.40
рейтинг книги
Законник Российской Империи. Том 2