Чтение онлайн

на главную - закладки

Жанры

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Шрифт:

Существуют ли простые числа сами по себе, вне человеческого разума? Этот вопрос занимал немецкого физика Генриха Рудольфа Герца.

* * *

КОСТЬ ИШАНГО

Кость Ишанго, возможно, берцовая кость бабуина, с первого взгляда выглядит как некий инструмент. Она имеет рукоятку, за которую ее удобно держать, и заостренный кристалл кварца на конце. Она была найдена у истоков Нила, на границе между Угандой и Демократической Республикой Конго, и принадлежала первобытному племени, погребенному извержением вулкана. Этому инструменту около 20000 лет.

Кость

Ишанго выставлена в бельгийском музее естественных наук в Брюсселе.

* * *

На кости имеются насечки в виде коротких прямых линий. Их детальное изучение привело к гипотезе, что эта кость не инструмент, а численная система для помощи в счете. В таком случае вполне вероятно, что кварцевый наконечник использовался для написания неких цифр. Другими словами, эта кость являлась примитивным калькулятором. Расположение насечек по столбцам предполагает операции сложения и умножения в системе счисления с основанием 12. Все числа справа — нечетные, но самое удивительное, что все числа слева являются простыми из промежутка от 10 до 20. Маловероятно, что эти знаки нанесены случайно, скорее всего, они указывают на существование некоторого серьезного метода вычислений.

Кость Ишанго в виде диаграммы, показывающей распределение насечек по трем столбцам. Кость, вероятно, использовалась для выполнения математических расчетов.

Напомним, что понятие простого числа требует абстрактного мышления, выходящего за рамки простого счета.

Вопрос о существовании математических истин независимо от человека имеет третий компромиссный ответ, который допускает возможность того, что действительно существуют математические идеи, которые могут быть открыты, но они являются «психическими понятиями», предопределенными нашим генетическим наследием. Если это так, некоторые примитивные формы этих понятий должны существовать в природе. Например, существует несколько видов животных, которые совершенно точно могут считать. Одиночные осы могут подсчитывать количество живых гусениц, которых они оставляют рядом со своими яйцами в качестве пищи для вылупившихся личинок: это всегда в точности 5, 12 или 24. У ос рода Eumenes мы встречаем еще более удивительные примеры. Оса знает, какая особь вылупится из отложенного яйца: мужская или женская. Неясно, как ей удается установить пол будущего потомства, так как норки, в которых она откладывает яйца, совершенно одинаковы. Но самое удивительное, что оса оставляет пять гусениц рядом с яйцом мужской особи и десять — рядом с яйцом женской особи. Причина такого различия в том, что женские особи вырастают до гораздо больших размеров, чем мужские.

Для иллюстрации существования в природе более сложных понятий, таких как простые числа, можно привести любопытный пример некоторых видов так называемых периодических цикад, а именно Magicicada septendecim и Magicicada tredecim.

Названия видов septendecim и tredecim означают соответственно 17- и 13-летний жизненные циклы насекомых. Оба числа являются простыми, и зоологи разработали различные теории для объяснения выбора простого числа для жизненного цикла этих насекомых.

Возьмем, к примеру, вид Magicicada septendecim. Личинка цикады живет под землей и питается соками корней деревьев. Она проводит 17 лет в таком состоянии, а затем выходит на поверхность, чтобы превратиться во взрослое насекомое. Эта стадия длится всего несколько дней, во время которых цикада размножается и после этого умирает. Теория, объясняющая такой жизненный цикл цикады, выглядит следующим образом: взрослое насекомое защищается от паразита с жизненным циклом два года.

Если бы жизненный цикл цикады был кратен 2, оба вида встречались бы каждые 2, 4, 8 лет и так далее. Однако если жизненный цикл цикады является

достаточно большим простым числом, например, 17, паразит и цикада могут встретиться раз в 34 года, так как 34 — первое число, кратное 17 и 2. Если бы, к примеру, жизненный цикл паразита составлял 16 лет, они бы могли встретиться раз в 16 х 17 = 272 года.

Вполне вероятно, что со временем при исследовании поведения животных найдутся еще примеры видов, которые обладают умением считать. Нас не должна смущать простота приведенных примеров, ибо факт остается фактом: несмотря на то что математические понятия, такие как простые числа, являются творением человека, исследователи в разных областях науки могут привести примеры существования этих понятий в природе независимо от нас.

Самки некоторых одиночных ос откладывают яйца в норках, где также складывают несколько парализованных гусениц, которые будут служить пищей для личинок осы после того, как те вылупятся. Самое удивительное, что эти осы знают, из каких яиц вылупятся мужские особи, а из каких женские, и оставляют для них определенное количество гусениц.

Решето Эратосфена

Поиск простых чисел всегда был сложной задачей. Один из первых известных методов приписывают Эратосфену из Кирены (273–194 до н. э.), древнегреческому математику, астроному и географу, который также заведовал Александрийской библиотекой. Метод получил название решета Эратосфена. Давайте посмотрим, как с помощью этого метода можно найти простые числа в первой сотне натуральных чисел.

Во-первых, составим таблицу со всеми натуральными числами от 1 до 100. Затем вычеркнем все числа, кратные двум: 4, 6, 8, 10 потом вычеркнем все числа, кратные трем: 6 (уже вычеркнули), 9, 12, 15. Затем проделаем то же самое для чисел, кратных пяти и семи.

Остались только простые числа.

Обратите внимание, что «просеивание» закончилось на числе 10, квадратном корне из 100. В общем случае, чтобы найти все простые числа, меньшие, чем заданное число N, нужно «просеять» все числа, которые меньше или равны квадратному корню из N. Это и дает метод нахождения простых чисел, который используется и сегодня, спустя более чем 2000 лет после изобретения, для поиска «малых простых чисел»: так называются простые числа, которые меньше 10 млрд.

* * *

РАЗМЕРЫ ЗЕМЛИ

Имя Эратосфена связано с методом нахождения простых чисел. Однако этот метод вовсе не является его самым важным достижением. На самом деле Эратосфен вошел в историю науки как первый человек, вычисливший размер Земли. Используя методы, доступные в III в. до н. э., он смог посчитать длину полярной окружности с погрешностью менее одного процента.

Карта мира, каким он был известен Эратосфену. Греческий ученый был первым, кто разделил изображение мира на равные части, проведя параллели, хотя его меридианы были расположены неравномерно.

* * *

Сколько существует простых чисел?

Если мы хотим изучать природу простых чисел, чтобы найти соотношения, связывающее их, или правила, позволяющие предсказать, когда появится следующее простое число, то в первую очередь нам необходимо иметь довольно большой набор простых чисел. В приведенном ниже списке, полученном с помощью решета Эратосфена, можно видеть простые числа из первой тысячи натуральных чисел.

<
Поделиться:
Популярные книги

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Наследник пепла. Книга II

Дубов Дмитрий
2. Пламя и месть
Фантастика:
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга II

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Наследие Маозари 6

Панежин Евгений
6. Наследие Маозари
Фантастика:
попаданцы
постапокалипсис
рпг
фэнтези
эпическая фантастика
5.00
рейтинг книги
Наследие Маозари 6

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3