Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Шрифт:
* * *
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Существует только пять правильных выпуклых многогранников. Возможно, именно поэтому греки уделяли им особое значение, соотнося их с четырьмя стихиями: тетраэдр (огонь), куб (земля), октаэдр (воздух), икосаэдр (вода); а додекаэдр олицетворял Вселенную. Правильные многогранники также известны как пять «Платоновых тел».
ТЕРМИНОЛОГИЯ ЕВКЛИДА
Предложение —
Теорема — предложение, которое может быть логически выведено из аксиом или из других ранее доказанных теорем с помощью принятых правил доказательства.
Постулат— предложение, истинность которого принимается без доказательства и лежит в основе дальнейших рассуждений; другими словами, допущение, лежащее в основе доказательства.
Аксиома — предложение, настолько ясное и очевидное, что оно не требует доказательств. Аксиомы более очевидны, чем постулаты.
* * *
Первоначальные определения из первой книги даются для точки, прямой линии, прямого угла и параллельных линий и лежат в основе евклидовой геометрии и других геометрий.
Определение 1. Точка есть то, что не имеет частей.
Определение 2. Линия — это длина без ширины.
[…]
Определение 4. Прямая линия есть та, которая равно расположена по отношению к точкам на ней.
[…]
Определение 10. Когда же прямая, восставленная на другой прямой, образует смежные углы, равные между собой, то каждый из углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.
[…]
Определение 23. Параллельные — суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.
Затем формулируются следующие аксиомы.
1. Равные одному и тому же равны и между собой.
2. Если к равным прибавляются равные, то и целые будут равны.
3. Если от равных отнимаются равные, то остатки будут равны.
4. Совмещающиеся друг с другом равны между собой.
3. Целое больше части.
В отношении фигур Евклид не говорит об их равенстве, а старается использовать слово «конгруэнтность». В общем случае под конгруэнтностью геометрических фигур понимается тот факт, что при наложении друг на друга они совпадают.
Далее Евклид формулирует пять знаменитых постулатов.
I. От всякой точки до всякой точки можно провести прямую линию.
II. Любой отрезок можно непрерывно продолжать по прямой линии.
III. Имея любой отрезок, можно описать круг с радиусом, равным длине этого отрезка, и с центром в одном из концов этого отрезка.
IV. Все прямые углы равны между собой.
V. Если две прямые пересекаются третьей, так что с одной стороны сумма внутренних углов меньше двух прямых углов, то эти две прямые неизбежно пересекаются друг с другом по эту сторону, будучи продленными достаточно далеко.
В соответствии с пятым постулатом, если сумма углов меньше двух прямых углов, то прямые линии будут сходиться (пересекутся). Значит,
«Сумма углов треугольника равна двум прямым углам (180°)».
Как потом доказал сам Евклид, это утверждение эквивалентно пятому постулату. Все треугольники образованы пересечением двух непараллельных прямых, которые затем пересекаются третьей. Параллельные линии в пятом постулате представляют собой особый случай, когда третья прямая перпендикулярна двум другим, и тогда два угла в сумме равны 180°, не оставляя ничего третьему углу треугольника.
Следовательно, по Евклиду нельзя построить треугольник с двумя прямыми углами.
Знаменитая теорема Пифагора также является еще одним частным случаем пятого постулата, когда только один из углов равен 90°:
«В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов двух других сторон».
Таким образом, оказывается, что, по сути, существует несколько утверждений, эквивалентных пятому постулату, о которых сам Евклид, возможно, не догадывался.
Пятый постулат, по сути, вызвал сумятицу. Понятие параллельных прямых, которые можно неограниченно продолжать, фактически вводило понятие бесконечности.
Кроме того, по формулировке Евклида пятый постулат больше похож на теорему, чем на универсальную истину. Таким образом, на протяжении веков многие математики были убеждены, что это на самом деле свойство прямых, которое может быть доказано, и поэтому пытались найти доказательство. В результате появилось большое количество эквивалентных формулировок пятого постулата. Наиболее важные из них (именно с точки зрения новых геометрий) приведены ниже.
Греческий философ Прокл (410–485) был самым известным представителем афинской школы математики. Его постулат о равноудаленности формулируется следующим образом:
«Прямая, параллельная данной прямой, сохраняет постоянное расстояние от нее».
* * *
ГЕОМЕТРИЯ В ИСКУССТВЕ
Художники в своих работах используют точки, прямые линии и другие геометрические объекты. Их работы очень помогают при ответе на вопросы «что такое точка?», «что такое прямая линия?», «что мы имеем в виду под параллельностью?»Василий Кандинский (1866–1944) был русским художником, поэтом, драматургом и педагогом. Научные исследования в области права и экономики он сочетал с занятиями графикой и живописью. Его преподавательский опыт отражен в трактате «Точка и линия на плоскости» (1925), где Кандинский определил прямую линию как «след перемещающейся точки».
* * *
Великий французский математик Адриен Мари Лежандр (1752–1833) пытался доказать пятый постулат в книге «Начала геометрии», которая многократно переиздавалась и переводилась на многие языки. Более 40 лет он искал доказательство пятого постулата, которое было бы математически строгим, но в то же время понятным читателям и студентам. К сожалению, он умер, так и не увидев развития неевклидовых геометрий. Однако именно он сформулировал постулат для углов треугольника:
Кодекс Крови. Книга ХVI
16. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Барону наплевать на правила
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Отличница для ректора. Запретная магия
Любовные романы:
любовно-фантастические романы
рейтинг книги
Лубянка. Сталин и НКВД – НКГБ – ГУКР «Смерш» 1939-март 1946
Россия. XX век. Документы
Документальная литература:
прочая документальная литература
военная документалистика
рейтинг книги
Дракон с подарком
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
рейтинг книги
Двойня для босса. Стерильные чувства
Любовные романы:
современные любовные романы
рейтинг книги
Кодекс Охотника. Книга VIII
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На границе империй. Том 3
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
рейтинг книги
Идеальный мир для Лекаря 13
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
рейтинг книги
Вперед в прошлое 2
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Темный Лекарь 7
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Наследник
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
рейтинг книги
