Чтение онлайн

на главную - закладки

Жанры

Шрифт:

У лошади, за счет большей массы тела, КПД еще больший, чем у людей. Теоретический предел для живого организма — это около 51 % энергии пищи, превращенной в чистую энергию. Поэтому, собственно говоря, лошади и люди долго и не сдавали свои позиции механизмам «века угля».

И, исходя из данного примера, уже становится понятно, почему первичный источник энергии должен иметь достаточно высокий EROI — на его «плечах» надо выстроить всю сложную технологическую цепочку комплексной структуры экономики. В каждом следующем переделе и превращении энергии его начальный КПД («перевернутый» EROI) будет умножаться на КПД специфических процессов каждого из переделов. Ну и внезапно, в ходе длинной технологической цепочки, результат умножения вполне может упасть ниже 1. Тогда КПД всей экономики, построенной на таком

ресурсе, тоже упадет ниже 100 %. И экономика станет производить меньше, чем подается на ее «вход». А это уже не экономика, а медленное вымирание.

[53]

Итак, для планирования будущего нужно четко знать, что, кроме EROI первичных источников не менее 4:1 (что соответствует КПД в 400 %), надо иметь еще и очень активные утилизирующие устройства, которые помогают превратить первичную энергию во что-то полезное. Поскольку первичная энергия в индустриальный век обычно состоит из всяких «невкусных» и «неполезных» вещей вроде атомов урана или цепочек углеводородов, сразу скажу, что батраки в моем забеге не участвуют — их принципиально нельзя накормить ни нефтью, ни газом. Кроме того, я принципиально не хочу, чтобы мои дети были батраками. Вот такое у меня, извините, граничное условие. Даже для США, потому что это тоже люди. Да и неэффективны рабы, как я показал выше.

53

In medias res — В самую суть дела.

Рассмотрим этих «крепких индустриальных ребят» утилизации энергии.

Рис. 65. Участники «веселых стартов» по использованию топлива.

Nota: ГПУгт — ДВС на генераторном газе; ПТУпг — ДВС на природном газе; ГТУ — газотурбинные установки на природном газе; ДДУ — двухтактные дизельные установки на дизельном топливе; МТУ — микротурбинные установки; ПДУ — установки с паровыми двигателями; ПТУ — паротурбинные установки на природном газе; ПГУ — парогазовые установки на природном газе; СДУ — установки с двигателями Стирлинга; ТЭУ — установки с топливным элементом; ЧДУ — четырехтактные дизельные установки на дизельном топливе.

Отрешившись от возможности задействовать всех этих «крепких ребят» на транспорте, — как мы помним, там есть весьма специфические требования к весу и запасу топлива (энергии) на тот или иной тип двигателя, — поставим их всех на неподвижный постамент и посмотрим, насколько они конкурентны друг другу.

Ведь в конечном счете всех этих «ребят» можно так или иначе подключить либо к инвертору, либо непосредственно к обычной динамо-машине и заставить выдавать электричество в общую сеть. После этого из такой глобальной электрической сети уже можно запитать и тяговые двигатели на транспорте (с КПД 70–80 %), и асинхронные двигатели на производствах (с КПД 90–95 %), и аккумуляторы электровелосипедов, лампочки, кондиционеры, кухонные комбайны и холодильники для населения, и будущие заводы по синтезу синтетического топлива для самых автономных и самых ответственных процессов.

Что сразу бросается в глаза?

Во-первых, природный газ надо жечь только в ПГУ (установки комбинированного цикла — газовая турбина, на ее выхлопе — паровая турбина). Такие комбинированные машины позволяют перегонять в электроэнергию до 60 % энергии топлива. Жечь газ в паровых котлах в будущем — недопустимая роскошь.

Во-вторых, паровозов будет немного. ПДУ (паровые поршневые установки), к сожалению, так всерьез и не вышли за размер 1 МВт и так и не поднялись выше 25–27 % по КПД. Все низкосортные топлива надо будет по максимуму утилизировать в ПТУ (паротурбинные установки, если что). Эти многоступенчатые

монстры могут работать практически на любом топливе и имеют самый высокий КПД при такой уникальной всеядности по топливу — самые мощные из них выдают до 41 % превращения энергии топлива в электричество. Однако, наряду с большими проектами, безусловно, будут реализовываться и более мелкие ПТУ, поскольку топливо специфического вида
«говно обыкновенное биомасса
» обычно плохо поддается какой-либо осмысленной транспортировке, и его часто имеет смысл утилизировать прямо на месте образования.

В-третьих, размер мощностей от 100 кВт до 10 МВт очень эффективно, по-прежнему, закрывается поршневыми двигателями внутреннего сгорания (ДВС). Чем лучше топливо, используемое в них, и чем совершеннее термодинамический цикл самого двигателя, тем более впечатляющ результат.

Дальше в догонялках внутри этого сегмента — просто-таки стандарт детской игры «камни, ножница, бумага». Дизель бьет двигатель с принудительным зажиганием на размерах больше 100 кВт, но проигрывает ему в более мелком размерном классе. Соляр эффективнее бензина, но в перспективе его будет труднее получать на заводах синтетического топлива — процесс Фишера-Тропша неэффективен для получения длинных цепочек углеводородов. Бензин эффективнее газообразного топлива, но в будущем газ низкого качества можно будет получать для ДВС и из коровьего навоза, и из древесины, и из угля. И я думаю, что именно в этом сегменте нам еще предстоит услышать о многих интересных изобретениях и концепциях.

Кроме того, надо учесть, что будущие источники энергии будут очень распределенными по площади, поэтому часто и густо генерация энергии размеров от 100 кВт до 1 МВт мощности будет очень востребована и экономически выгодна — при местном использовании многие такие топлива имеют очень высокий EROI, а вот при перевозке они эту эффективность теряют.

В-четвертых, в будущем надо будет что-то делать с «трудными подростками XX века» — топливными элементами, микротурбинами и двигателем Стирлинга.

Каждый из этих концептов очень интересен сам по себе (как сферический конь в вакууме), но требует очень серьезных усилий инженеров по его доводке до состояния готового изделия. Микротурбины имеют адские запасы по собственному ресурсу (120 000 часов без капитального ремонта уже сейчас при 8000 часов у среднего ДВС), двигатели Стирлинга могут работать, как и паровики, практически на чем угодно (а с гелием в виде рабочего тела — и с очень высоким КПД), а топливные элементы, в перспективе, обеспечивают необыкновенный КПД преобразования — до 70 % энергии топлива можно превратить в электричество.

И да, теперь все эти ребята выигрывают у батраков и лошадей. Человечество не зря два века ломало себе голову над тем, как сделать наш мир интереснее, чище, эффективнее и добрее.

Однако пока Америка продолжает увлеченно участвовать в безнадежном ралли жидкого топлива. Ни инфраструктура транспортной энергии, ни производство электроэнергии в США никак особо не изменяются. Сланцевая нефть, канадские битумозные пески, нефть Мексиканского залива, война в Ливии, Сирии и «далее везде»… Что есть еще в активе у американского нефтяного динозавра? Цивилизационный гегемон ведь вступил в последний бой за энергию прямо на наших глазах. Рассмотрим все эти альтернативы вместе — и каждую по отдельности.

И начнем все же с фокстерьера, которого мы как-то незаслуженно забыли в тени нефтяного динозавра.

Вот состояние нашего фокстерьера в мире современной нефти.

Рис. 66. График потребления и добычи нефти в России. Данные EIA.

Как видите, на самом деле даже сейчас, на фоне существующей, старой инфраструктуры, Россия тратит на себя лишь 25–30 % добытой сырой нефти, или около 2,5 Мбд. Оставшиеся 70 % уверенным потоком льются за рубежи страны. То есть, в отличие от нашего нефтяного динозавра, у фокстерьера еще нет призрака нефтяного голода даже и на горизонте. Но дело и не в том, что у фокстерьера полно нефти.

Поделиться:
Популярные книги

Хозяйка усадьбы, или Графиня поневоле

Рамис Кира
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Хозяйка усадьбы, или Графиня поневоле

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Законы Рода. Том 11

Flow Ascold
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Пленники Раздора

Казакова Екатерина
3. Ходящие в ночи
Фантастика:
фэнтези
9.44
рейтинг книги
Пленники Раздора

Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Литвинов Павел Петрович
Научно-образовательная:
учебная и научная литература
5.00
рейтинг книги
Учим английский по-новому. Изучение английского языка с помощью глагольных словосочетаний

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Купец V ранга

Вяч Павел
5. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец V ранга

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3