Мир на пике – Мир в пике
Шрифт:
Менделеев предсказал технеций в виде эка-марганца, но в силу того, что элемент технеций по необъяснимому капризу природы оказался радиоактивным (самые стабильные изотопы технеция живут несколько миллионов лет), то весь XIX век его никак не могли найти. Вот уж где была алхимия — «открывали», а потом «закрывали» эка-марганец как минимум пять раз. А что? При желании черная кошка находится в любой темной комнате. Правда, потом кошка может загавкать, но это уже будет потом.
62
Vis atrox — Страшная сила.
Получили
Понятно, что такая система когда-то будет построена и, наверное, будет включать в себя достаточно понятную и простую математическую модель поведения любого изотопа, объяснит варианты распада существующих ядер и предскажет поведение новооткрытых; но пока мы имеем, что имеем. И, если при взгляде на верхний рисунок вас вдруг потом, во сне, как у Дмитрия Ивановича, посетит озарение и вы начнете резво набрасывать систему из сложных уравнений, — не пугайтесь. Это не болезнь, это гипотеза. Пишите, например, в Дубну или в Обнинск. Там тоже иногда по ночам не спят, они выслушают, поймут и поддержат.
На предыдущей картинке уже отчетливо видны и все доступные человечеству, благодаря капризам «лотереи» ядерной физики, квази-стабильные изотопы элементов, лежащих за стабильным «материком» легких элементов.
Это несколько «небоскребов» на острове, расположенном ближе всего к зрителю.
Квазистабильные изотопы — это изотопы, период полураспада которых измеряется сотнями миллионов и миллиардами лет, то есть нижняя черта стабильности для этих изотопов проведена сугубо условно — условием квазистабильности принята возможность обнаружения данного изотопа в каких-то значительных количествах в природе, на нашей Земле, по состоянию на 2013 год. Тот же прометий и технеций методами сверхточной спектроскопии нашли впоследствии в урановых рудах как результат распада ядер урана, но это лишь подтвердило фундаментальные выкладки. Никакого разумного использования это открытие не имело — при желании изотопы дешевле получить в реакторе из квазистабильных.
Дальше, если Вы не против, у нас пойдут «веселые картинки», которые помогут многим не заскучать во время рассказа о ядерных реакциях и изотопах.
Рис. 72. Знакомьтесь: 235U, 238U — метафорическая визуализация образа.
Nota: Они всегда вместе… они просто любят друг друга. И да, нам нужен только тот изотоп, который с упругой попкой, и которого меньше.
Перечислим эти изотопы поименно. Это: уран, который в природе представлен тремя изотопами — 234U, 235U и 238U. Изотопы 238U и 235U являются квазистабильными и содержатся в породе с относительными концентрациями 99,283 % и 0,711 %. Легкий изотоп 235U, как вы помните, как раз и получают из природного урана, а потом запихивают в АЭС и в ядрен-батоны.
Изотоп 234U образуется тут же, прямо в залежи урана, за счет ?-распада основного стабильного изотопа урана — 238U (основного, малоактивного природного изотопа урана, тот, который на фото
Поскольку 234U имеет период полураспада «всего-то» в 245 тысяч лет, его в природном уране вообще очень мало — всего 0,0055 %.
Рис. 73. Метафорическое изображение 234U, чтобы запомнилось.
Но, как говорится, «мал клоп, да вонюч». Поскольку этот изотоп короткоживущий, то его активность по сравнению с квазистабильными «старшим братом и сестрой» просто-таки адская и составляет около 49 % от общей радиоактивности природного урана. Кроме того, по причинам маленького веса ядра 234U, даже меньшего, чем у 235U, любые обогатительные технологии, отделяющие 235U от урана 238U, с еще большим удовольствием отделяют и нашего «вонючего клопа». При этом реакторный и, в еще большей мере, оружейный уран оказываются обогащенными и по содержанию 235U, и, еще больше, — по содержанию 234U. Спасает ситуацию только малое содержание «вонючего клопа» в начальной породе, которое при обогащении хоть и увеличивается быстрее, чем у 235U, но все же остается на более-менее пристойных уровнях.
Однако оценивать любой обогащенный уран (и реакторный, и, тем более, оружейный) уже приходится с учетом «активности клопа». То есть, если природный или, тем более, обедненный уран, при ярком желании и малом уме, можно даже положить себе на денек в трусы и вывезти за рубеж, то делать такие фокусы с оружейным ураном уже категорически не стоит.
В общем, у толстого парня на верхней фотографии (238U) не только жуткие семейные трусы и шлепки, так он еще и клопов (234U) нам в ядерное топливо заносит. А куда же без них? Без этого парня и его нательных членистоногих наша девушка «ядерная спичка» (235U) нигде не ходит.
Кроме того, что «клоп» не по-детски фонит, других неприятных особенностей у него нет — в обычном современном энергетическом реакторе, под «живительным потоком тепловых нейтронов» изотоп 234U потихоньку превращается в свою старшую сестру — 235U. Поэтому для целей получения энергии его считают «в общий зачет» с 235U.
Однако на превращение 234U в 235U все-таки приходится тратить один лишний нейтрон, а учитывая, что девушка-«ядерная спичка» (235U) при делении нам выдает эти нейтроны скупо и под четкий счет (обычно 2–3 нейтрона на деление), то тратить один из них на «конвертацию» клопа обидно, но приходится.
Разобравшись с ураном, перейдем к торию. Здесь наблюдаемая картинка гораздо проще, чем у урана. Природный торий представлен лишь одним квазистабильным изотопом — 232Th, который, как и основной изотоп урана — 238U, имеет период полураспада, исчисляемый миллиардами лет. Если быть точным, то у 238U это 4,47 млрд лет, а у 232Th — 14,05 млрд лет, то есть торий будет на нашей планете, когда уже никакого урана и в помине не останется.
63
Respice finem — Учти конец.