Чтение онлайн

на главную - закладки

Жанры

Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:

Закон упругости пространства-времени Эйнштейна

Чтобы более наглядно понять смысл теории гравитации Эйнштейна, вспомним теорию упругости, созданную британским ученым Робертом Гуком. Гук был одним из самых плодотворных научных деятелей XVII в. Он внес существенный вклад во впечатляющее количество научных областей и, кроме того, в течение долгого времени был секретарем Лондонского королевского общества. Его работы предвосхитили некоторые открытия Ньютона (касательно общих законов динамики и поведения 1 / r^2 закона тяготения). К сожалению для него, Ньютон, который был гением, но отличался весьма подозрительным и вспыльчивым нравом, игнорировал его достижения и делал все, чтобы принизить важность его работ. Наверное, Ньютон был бы в ярости, увидев такую интерпретацию теории гравитации Эйнштейна (вытеснившую его собственную), которую мы собираемся сделать, используя обобщение закона упругости Гука!

Отправная точка теории Гука довольно проста для понимания. Рассмотрим произвольную упругую структуру, т. е. такую, которая возвращается к своей первоначальной форме после деформирования воздействующей на нее силой. Простой пример упругой структуры – пружина. Рассмотрим пружину, верхний конец которой прикреплен к жесткому массивному телу, а нижний – свободен. Если потянуть вниз за нижний конец пружины или прикрепить к нему груз, то пружина деформируется и растянется. Если прикрепить не слишком тяжелый груз, то можно заметить, что растяжение пружины прямо пропорционально его весу: в два раза больший вес будет давать в два раза большее растяжение. Другими словами, деформация упругой структуры пропорциональна напряжению, действующему на эту структуру. Если обозначить «деформацию» буквой D, а «напряжение» буквой T,

то закон упругости Гука сводится к простому утверждению D = T, где – коэффициент пропорциональности, характеризующий «упругость» рассматриваемой структуры. Чем больше , тем более упругой является структура, т. е. тем больше она деформируется под действием заданного напряжения. Можно также сказать, что обратная коэффициенту величина 1 / измеряет жесткость рассматриваемой структуры. Чем меньше , тем больше жесткость (и тем меньше упругость). Этот универсальный закон упругости справедлив только в ограниченном диапазоне прикладываемого напряжения (не сильно отличным от нуля). Обратите внимание, что напряжения и соответствующие деформации могут прикладываться как в одном, так и в другом направлении, т. е. могут быть положительными или отрицательными. Независимо от знака приложенного напряжения, деформация будет возвращаться к нулю, если напряжение постепенно уменьшается до нуля. Это и есть основное свойство упругой структуры – стремление возвращаться в исходное «недеформированное» состояние, когда деформирующая сила перестает действовать.

В то же время если перейти определенный порог (так называемый «предел упругости»), другими словами, если приложить слишком большое напряжение, то в общем случае мы покинем область упругости для данной структуры. И тогда мы переходим в область «пластичности», где структура приобретает постоянную деформацию, остающуюся после того, как напряжение перестает действовать, и затем в область «разрыва», где структура рвется.

Чтобы немного развить интуицию, а также приблизиться к нашей модели «пространственно-временного желе», рассмотрим в качестве упругой структуры трехмерную среду, имеющую место в случае заливной телятины. То, что мы собираемся сказать, в равной степени относится и к более жесткой среде, такой как металл, однако жесткость металла настолько велика, что интуитивно сложно представить его в качестве упругой структуры. Поэтому мы рассматриваем кусок (однородного) желе. Деформируем этот блок, прикладывая давление, или напряжение, к его краям. Это создает напряженное состояние внутри куска. Такое напряженное состояние описывается (в механике сплошных сред) математическим объектом, называемым тензором напряжений. Этот тензор, который мы обозначим через T (от английского слова tension) {72} , позволяет вычислять силы внешнего воздействия, действующие на поверхность выделенного элемента объема внутри среды. В газообразной среде T определяется давлением газа.

72

На самом деле математический термин «тензор» (англ. tensor) изначально возник как физический объект, используемый для описания «напряжений» (англ. tensions) в сплошной среде.

Нам остается описать, как определяется деформация блока желе D. Когда деформация D мала, она определяется как разница между геометрической структурой деформированного и исходного недеформированного блока. Каким же образом можно измерить геометрическую структуру сплошной среды? Точно так же, как мы поступали выше, анализируя геометрическую структуру пространства при помощи визуализации. Опишем сначала визуализацию геометрии недеформированного блока желе (рассматриваемого в обычном евклидовом пространстве), представляя вокруг каждой точки блока геометрическое место точек, расположенных от данной на единичном расстоянии. Это дает регулярную сеть сфер внутри блока. Теперь мы деформируем блок, т. е. заставляем желе двигаться произвольным, но непрерывным образом (так же как деформируется содержимое тюбика зубной пасты, когда его сжимают). Это непрерывное перемещение деформации желе будет деформировать сеть сфер. Сначала центр каждой сферы смещается. Однако такой эффект сам по себе не связан с напряжением в среде, так как можно было бы, например, переместить весь блок желе вправо на один сантиметр, двигая его целиком и не создавая никакой нагрузки внутри блока. С точки зрения упругости важно, таким образом, измерить, как деформируется каждая сфера, когда она следует за движением желатина вокруг себя. Если рассматривать, как мы делаем здесь, небольшие смещения, то можно обнаружить, что сфера деформируется в «эллипсоид», т. е. в своего рода мяч для регби. Поэтому мы будем называть деформацией D математический объект, который измеряет разницу между эллипсоидом и сферой. Видно, что этот объект имеет ту же математическую природу, что и объект, описывающий наличие напряжений в среде, и, таким образом, является тензором, который называют тензором деформации {73} . Наконец, закон упругости для однородной и изотропной сплошной среды, такой как блок желе, можно получить, если записать наиболее общее линейное соотношение, которое может существовать между двумя математическими объектами одного и того же типа (тензором деформации D и тензором напряжений T) {74} : D = T.

73

Можно показать, что «тензор деформации» математически строится из различных пространственных производных «вектора» смещения желе. В свою очередь, вектор смещения представляет собой набор маленьких стрелок, соединяющих начальные невозмущенные положения материальных точек в желе с их конечными возмущенными положениями.

74

Оказывается, что для однородной и изотропной среды объект лишь немного сложнее, чем простой численный коэффициент пропорциональности. Он состоит из двух численных коэффициентов, называемых коэффициентами упругости Ламе.

Немного расширив понимание упругости непрерывной среды (в смысле обычной механики), мы можем вернуться к главной цели этой главы: попытке понять общую теорию относительности как теорию упругости пространства-времени. Для этого необходимо обсудить два вопроса: (i) что является аналогом D, т. е. какой математический объект описывает «деформацию» пространства-времени по отношению к «однородному» пространству-времени Минковского; и (ii) что является аналогом T или, другими словами, какой математический объект описывает причину (или источник) пространственно-временной деформации, т. е. то, без чего пространство-время оставалось бы пространством-временем Минковского. Ответ на вопрос (ii) довольно быстро был получен Эйнштейном путем следующего рассуждения.

Во-первых, Эйнштейн предложил идентифицировать метрический тензор g, описывающий пространственно-временную хроногеометрию, с гравитационным полем. Этот вывод следовал из анализа принципа эквивалентности, открытого Эйнштейном в ноябре 1907 г. Рассмотрим, например, простой случай пространства-времени Минковского. Если наблюдатель исследует пространство-время Минковского, оставаясь при этом в «инерционной» системе отсчета, т. е. в системе, движущейся без ускорения, он не будет наблюдать гравитационное поле (свободные частицы не будут «падать», но будут оставаться в покое или же двигаться с постоянной скоростью), и метрический тензор g, описывающий пространственно-временную хроногеометрию будет тривиальным (т. е. будет задаваться постоянными коэффициентами) {75} . В то же время наблюдатель, находящийся в ускоряющемся лифте, т. е. использующий координаты, нелинейно связанные с обычными координатами специальной теории относительности, наблюдает два взаимосвязанных явления: (i) метрический тензор g приобретает более сложное выражение с коэффициентами, которые изменяются от одной точки к другой, и (ii) в ускоряющемся лифте возникает кажущееся гравитационное поле, т. е. частицы в нем как будто падают с ускорением. Это ускорение кажущегося притяжения напрямую связано с тем, что коэффициенты g меняются от одной точки к другой.

75

Компоненты gµ принимают значение +1, когда индексы µ и равны друг другу и соответствуют квадрату разности пространственных координат, т. е. когда µ = = 1, или 2, или 3. Если использовать в качестве

временной координаты x0 = ct, то компонента g00, отвечающая квадрату временной разности, принимает значение -1 (если же в качестве временной координаты использовать непосредственно t, то gtt = -c^2). Наконец, остальные шесть компонент, отвечающие двойным произведениям, т. е. компоненты gµ, в которых µ отличен от , будут равны нулю.

Осознав, что g = хроногеометрия = гравитация, перейдем к следующему этапу, состоящему в понимании того, что является источником g и тем самым источником гравитации. Со времен Ньютона известно (из-за универсальности свободного падения и равенства действия и противодействия), что масса определяет и то, как действует гравитация (определяя вес), и то, что создает гравитационное поле. Таким образом, источником гравитационного поля по Ньютону является масса. Однако, как говорилось в главе 2, специальная теория относительности полностью изменила и обогатила понятие массы. А именно: оно было заменено понятием массы-энергии – величины, сохраняющейся при любых преобразованиях, в ходе которых в силу уравнения E = mc2 масса может преобразовываться в энергию, и наоборот. В связи с этим Эйнштейн ожидал, что в качестве источника гравитации будет выступать масса-энергия, распределенная во всем пространстве-времени. Наш поиск источника гравитации, однако, не может считаться законченным, поскольку более детальный анализ причин сохранения массы-энергии на основе специальной теории относительности показывает, что плотность массы-энергии на единицу объема является лишь одной из компонент более сложного математического объекта, называемого тензором энергии-импульса. Этот тензор имеет 10 компонент: одна компонента описывает плотность массы-энергии на единицу объема, еще три описывают плотность импульса (или количества движения) на единицу объема, а остальные шесть описывают тензор напряжений в том же смысле, как введенный нами ранее тензор напряжений для трехмерной сплошной среды. Этот десятикомпонентный тензор {76} , одновременно задающий как плотность массы (являющейся предметом закона Ньютона), так и тензор напряжений (являющейся предметом закона Гука), мы будем обозначать далее через T.

76

Обычно этот тензор обозначается Tµ, где индексы µ и соответствуют используемым координатам xµ с µ = 0, 1, 2, 3. Компонента, соответствующая «квадрату времени», т. е. T00, измеряет плотность массы-энергии, в то время как чисто пространственные компоненты Tij с индексами i и j, принимающими значения 1, 2, 3, в точности соответствуют тензору напряжений упругой среды.

Вернемся к одному из наиболее важных моментов на пути к созданию Эйнштейном общей теории относительности. Как мы уже говорили, первая идея обобщения этой теории возникла у Эйнштейна в 1907 г., когда он все еще работал (по восемь часов в день, включая субботы) в бернском патентном бюро. Однако вскоре в связи с большим интересом к специальной теории относительности 1905 г., а также к некоторым другим его работам сразу несколько научных центров предложили Эйнштейну университетские позиции. В 1909 г. он оставил патентное бюро Берна, чтобы занять должность ассоциированного профессора в университете Цюриха (с той же зарплатой, которую он имел в Берне). Эйнштейн и Милева были счастливы вернуться в Цюрих – город, где они встретились во время учебы в Политехническом университете. Там в 1910 г. родился их второй сын Эдуард. Однако в 1911 г. Эйнштейн принял другой пост, на этот раз в качестве полного профессора, в немецком университете Праги. В Праге он провел лишь один год. Там он посещал литературный салон Берты Фант и встречался с (еврейскими) писателями и мыслителями Праги, в частности с Максом Бродом и Францем Кафкой. Именно в Праге он возобновил (поскольку в 1907–1911 гг. в основном занимался развитием своих квантовых идей, см. ниже) поиски обобщенной теории относительности и получил несколько очень важных результатов. В частности, он более точно понял принцип эквивалентности и пришел к идее о том, что этот принцип влечет наблюдаемое отклонение световых лучей, проходящих вблизи контура Солнца {77} , и сдвиг в красную (более низкочастотную) часть спектра световых лучей, испускаемых с поверхности массивного тела (такого как Солнце).

77

Однако еще до появления окончательной формулировки теории гравитации он, находясь в Праге, предсказал величину отклонения света, в два раза меньшую конечного результата. Иными словами, он получил 0,875 угловой секунды (значение, которое давала ньютоновская теория тяготения, если учесть, что свет состоит из корпускул) вместо 1,75 угловой секунды, которое будет определено в ноябре 1915 г.

В конце июля 1912 г. Эйнштейн с семьей возвращается в Цюрих, поскольку принимает должность полного профессора в своем родном Политехническом университете, который завоевал к тому времени более высокий титул Швейцарского федерального технологического института (Eidgen"ossische Technische Hochschule – ETH). Вероятно, именно в Цюрихе примерно в августе 1912 г. Эйнштейн сделал свой очень важный концептуальный «шаг» в построении общей теории относительности. Он, в сущности, понял то, что мы уже объясняли выше, а именно: (i) что гравитационное поле эквивалентно деформации геометрии пространства-времени и, следовательно, должно описываться 10 компонентами «хроногеометрического тензора» g; (ii) что источником «поля g» является распределение массы-энергии, импульса и напряжения, описываемое объектом с 10 компонентами – тензором энергии-импульса T; и, наконец, (iii) что основное уравнение релятивистской гравитации должно иметь форму закона упругости пространства-времени {78} : D(g) = T, где D(g) является математическим объектом, сконструированным из g и призванным описывать деформацию пространства-времени или, другими словами, определять насколько пространство-время, имеющее геометрию, описываемую g, отличается от пространства-времени Минковского.

78

Отметим, что Эйнштейн никогда не использовал выражение «закон упругости пространства-времени», введенное в этой книге. Тем не менее мы считаем, что использование этого образа не искажает, а скорее, проясняет центральную идею его теории.

С такими мыслями Эйнштейн отправился к своему старому другу Марселю Гроссману, который был его товарищем еще со времен учебы в ETH (тогда еще бывшего Политехом) и который много раз «спасал его», сначала предоставляя свои конспекты лекций перед экзаменами, затем помогая устроиться в патентное бюро Берна и, наконец, делая все, чтобы ETH предложил Эйнштейну пост заслуженного профессора. Марсель Гроссман был математиком, в 1907 г. он стал профессором геометрии в ETH, а с 1911 г. – деканом факультета математики и физики. Эйнштейн предложил Гроссману сотрудничество в поисках «хорошего определения» математического объекта D(g). Гроссман преподавал в ETH геометрию, и его математические работы также были сосредоточены на проблемах геометрии, но это была другая геометрия – геометрия структур, определяемых как множества прямых линий и точек в однородных пространствах. Гроссман не был знаком с тем типом «неоднородной» геометрии, которая требовалась Эйнштейну. Тем не менее, просмотрев математическую литературу, он быстро понял, что некоторые работы Римана, Кристоффеля, Риччи и Леви-Чивита несомненно содержали математические инструменты, необходимые и достаточные для построения объекта D(g), который искал Эйнштейн. Однако эти математические инструменты были довольно сложны, и, чтобы освоить их, а также понять их физический смысл, Эйнштейну и его другу приходилось прикладывать серьезные усилия в течение многих месяцев (а в случае Эйнштейна – многих лет). Приведем выдержку из письма Эйнштейна своему коллеге Арнольду Зоммерфельду, написанного в период, когда Эйнштейн прилагал «буквально сверхчеловеческие» усилия (используя его выражение) для решения проблемы релятивистской теории гравитации:

Поделиться:
Популярные книги

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Камень Книга одиннадцатая

Минин Станислав
11. Камень
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Камень Книга одиннадцатая

1941: Время кровавых псов

Золотько Александр Карлович
1. Всеволод Залесский
Приключения:
исторические приключения
6.36
рейтинг книги
1941: Время кровавых псов

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Страж Кодекса. Книга VIII

Романов Илья Николаевич
8. КО: Страж Кодекса
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Страж Кодекса. Книга VIII

Сердце Дракона. Том 8

Клеванский Кирилл Сергеевич
8. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.53
рейтинг книги
Сердце Дракона. Том 8

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Мастер темных Арканов 5

Карелин Сергей Витальевич
5. Мастер темных арканов
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер темных Арканов 5

Кротовский, вы сдурели

Парсиев Дмитрий
4. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Кротовский, вы сдурели