Чтение онлайн

на главную - закладки

Жанры

Мир по Эйнштейну. От теории относительности до теории струн
Шрифт:

Напомним, что в течение двух тысячелетий, с тех пор как древнегреческие философы впервые заговорили об атомах и пустоте, материя представлялась состоящей из точечных частиц. Западная физика добавила понятие силы и выявила, что источником этой силы является непрерывное поле, создаваемое материей. Можно представить себе, например, электрическое поле, создаваемое заряженными частицами. Но в 1905 г. Эйнштейн выдвинул революционную идею, что электромагнитное поле фактически состоит из точечных корпускул, квантов света или фотонов. Работы Гейзенберга, Дирака, Йордана, Паули и др. в 1930-е гг. показали, как математический формализм квантовой теории позволяет примирить кажущиеся противоречивыми свойства непрерывного поля и локализованных частиц. Затем благодаря, в частности, работам американского физика Ричарда Фейнмана было показано, что возможно реконструировать полную теорию «квантовых полей», используя основные постулаты квантовой теории

динамики точечных частиц.

Теория «квантовых струн» определяется, применяя эти же базовые квантовые постулаты к динамике упругих релятивистских струн. Каждая струна подобна «резинке», т. е. тонкой резиновой ленте. При этом она может быть «замкнутой», т. е. замкнуться в петлю, или же «открытой», т. е. заканчиваться с двух сторон. Релятивистская струна обладает внутренней напряженностью, которая стремится уменьшить ее длину. Точнее, эта напряженность, если бы ей ничто не противодействовало, свела бы длину струны к нулю. В противоположность обычной резинке, которая обладает в состоянии покоя ненулевой длиной и становится напряженной, только если ее растягивать, релятивистская струна всегда находится в напряжении, тогда как ее «длина в состоянии покоя» равна нулю. Таким образом, релятивистская струна может иметь ненулевую длину, только если она не находится в состоянии покоя, а возбуждается непрерывным движением. Например, струна может равномерно вращаться вокруг себя, как фигурист, который крутится на льду с распростертыми руками, или же может совершать колебательные движения во всевозможных направлениях, как танцор хип-хопа.

Мы не будем здесь вдаваться в детали квантовой теории релятивистских струн и ограничимся лишь общей информацией. Эта теория была предложена в 1968 г. в работе Габриеле Венециано. В течение последующих 30 лет она развивалась в работах большого числа физиков, среди которых необходимо отметить Габриеле Венециано, Мигеля Вирасоро, Пьера Рамона, Андре Неве, Джона Шварца, Джоэла Шерка, Майкла Грина, Александра Полякова и Дэвида Гросса. Затем ученые, в частности Пол Таунсенд, Джозеф Польчинский и Эдвард Виттен, осознали, что помимо струн эта теория предполагает также существование более сложных протяженных объектов, таких как упругие мембраны (подобные резиновым мячам) или в более общем случае pбраны, т. е. объекты, протяженные в p пространственных направлениях {176} .

176

Если p равно единице, мы получаем струну, тогда как p = 2 дает мембрану, p = 3 – упругого моллюска и т. д. Случай p = 0 описывает точечную частицу. Даже случай p = -1 существует и описывает «инстантон», т. е. (введенный А. Поляковым) объект, существующий лишь одно мгновение (фр. instant) в некоторой точке пространства.

Два столпа, на которых стоит теория струн, – это специальная теория относительности (1905 г.) и квантовая теория. Первоначальная формулировка теории струн полностью игнорирует общую теорию относительности. Тем не менее весьма примечательно, что теория струн, как оказывается, содержит в качестве подсектора общую теорию относительности. Это довольно удивительно, поскольку в качестве отправной точки теория струн предполагает четкое разделение между жестким резервуаром (пространство-время Минковского) и эластичным наполнением (струны). Однако в конечном счете оказывается, что в соответствии с теорией наполнение в некотором смысле частично передает свою упругость резервуару, в результате чего он становится эластичным пространством-временем общей теории относительности.

С этой точки зрения теория струн (частично) {177} реализует одну из идей Эйнштейна, согласно которой гравитация, описываемая как пространственно-временная деформация, является не дополнительным атрибутом реальности, но, скорее, чем-то неотъемлемым, что должно играть фундаментальную роль. Более того, оказывается, что теория струн предсказывает более богатую геометрическую структуру пространства-времени, нежели та, что используется в общей теории относительности. Было установлено, что некоторые из новых геометрических структур, предложенных теорией струн, удивительным образом связаны с «последней единой теорией» {178} , над которой Эйнштейн работал до последнего дня.

177

То, что искривленная геометрия пространства-времени появляется в теории струн как «поправка» к начальному недеформированному пространству-времени, выглядит неудовлетворительным. Многие физики надеются, что в теории струн можно доказать выполнение своего рода принципа «обобщенной общей теории относительности», таким образом, что не будет необходимости задавать исходное базовое пространство-время.

178

В этой

теории «метрический тензор» gµ не должен быть симметричным по индексам µ и . Симметричная часть gµ соответствует обычной геометрии общей теории относительности, в то время как асимметричная часть является новым полем. Оказывается, что уравнения, написанные Эйнштейном, весьма напоминают те, что следуют из теории струн, в которой естественным образом возникают как симметричный тензор, так и антисимметричный (поле Калба – Рамона Bµ).

Другая идея Эйнштейна заключалась в объединении электромагнитного поля (Максвелла) с гравитационным полем (в смысле Эйнштейна). Многие считали, что эта надежда была тщетной и наивной. Удивительно, однако, что теория струн, похоже, абсолютно нетривиальным образом «объединяет» электромагнитные взаимодействия (а также их обобщения, так называемые «калибровочные взаимодействия» или «взаимодействия Янга – Миллса») с гравитацией Эйнштейна. Это объединение пока что выглядит таинственным, однако, как предполагается, оно может содержать важный ключ к дальнейшему развитию теории {179} . Интересно отметить также, что в некотором смысле электромагнитное поле связано c открытыми струнами (имеющими два конца), в то время как гравитационное поле связано с замкнутыми струнами.

179

В данном случае я имею в виду «дуальность» между «калибровочными теориями» и «струнами», которая была предположена Александром Поляковым, а также Хуаном Малдаcеной.

Эйнштейн также надеялся устранить «точечные сингулярности», возникающие в пространстве-времени Минковского при рассмотрении полей точечных источников. Он полагал, что гравитация может заменить эти особенности регулярными зонами, такими как «мосты Эйнштейна – Розена», которые он изучал в 1935 г. Теория струн опять-таки кажется способна реализовать эту надежду весьма нетривиальным образом. Действительно, некоторые недавние работы {180} по теории струн показывают глубокую и загадочную эквивалентность между источниками определенных полей, аналогичных электромагнитному полю, и деформированным пространством-временем. Если пренебречь гравитацией, эти источники (так называемые браны Дирихле) порождают особенности поля. Однако при учете эффектов гравитации производимое ими деформированное пространство-время становится полностью регулярным. Кроме того, эти деформированные версии пространства-времени содержат геометрические структуры, подобные мостам Эйнштейна – Розена. Наконец, что действительно замечательно, эквивалентность, о которой мы только что говорили, позволяет идентифицировать определенные процессы и их результаты, обладающие типично квантовой природой, с неквантовыми, геометрическими явлениями.

180

Инициированные Игорем Хлебановым и получившие большое развитие благодаря замечательной гипотезе Хуана Малдасены.

Как мы видим, многие надежды Эйнштейна, таким образом, находят неожиданную реализацию в наиболее передовой физике. Тем не менее необходимо обратить внимание на тот факт, что контекст, в котором эти надежды частично реализуются, сильно отличается от изначально предполагаемого самим Эйнштейном. В частности, принятие квантовой теории в качестве отправной точки является необходимым условием для того, чтобы в теории струн происходили только что описанные нами явления.

Ни дня без Эйнштейна

Однажды Эйнштейн сказал: «Стыдно должно быть тем, кто бездумно пользуется чудесами науки и техники, понимая в них не более коровы, с наслаждением пасущейся на лугу, не зная ничего о ботанике». А еще он настаивал на том, что основным источником всех технических достижений являются «божественное любопытство и увлеченное стремление исследователя думать и изобретать». Из уважения к Эйнштейну я хотел бы призвать вас, дорогой читатель, иногда задумываться о всех тех повседневных услугах и технологиях, которые возникли благодаря увлеченному стремлению Эйнштейна размышлять о структуре реальности.

Заметим к тому же, что Эйнштейн не был «чистым теоретиком», не проявляющим никакого интереса к практическим приложениям. На протяжении всей своей жизни, со времен лабораторных занятий в Цюрихе и работы в патентном бюро, он сохранял интерес к экспериментальным исследованиям и практическому применению научных знаний. [Напомним также, что его дядя Якоб был инженером, работавшим вместе с его отцом над электрификацией города Мюнхена, а затем провинции Павия в Италии.] В частности, Эйнштейн получил ряд патентов на различные изобретения, начиная от устройства для измерения малых напряжений, бесшумного холодильника и гирокомпаса на магнитной подвеске и заканчивая слуховым аппаратом.

Поделиться:
Популярные книги

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Контракт на материнство

Вильде Арина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Контракт на материнство

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Босс для Несмеяны

Амурская Алёна
11. Семеро боссов корпорации SEVEN
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Босс для Несмеяны

Меч Предназначения

Сапковский Анджей
2. Ведьмак
Фантастика:
фэнтези
9.35
рейтинг книги
Меч Предназначения

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3