Чтение онлайн

на главную - закладки

Жанры

Мир вокруг нас
Шрифт:

Чтобы получить более точную формулу, а не первое приближение, необходимо найти, вероятные, поправочные коэффициенты, обусловленные нюансами геометрии: Например, мы не учли, что выбитые 13 вакуумных частиц, в отличие от одной вакуумной частицы — не являются сферичной фигурой, а представляются 14-гранником; эта несферичность, при образовании таона — проявляется ещё более выраженно, см. рис. 18. Также в поправочный коэффициент, помимо всего прочего, могут входить неучтённые промежутки между (сферическими) эпицентрами вакуумных частиц (появляются лишь в мюоне и таоне), и некоторые другие нюансы геометрии вакуума, о которых позже. Учёт всех нюансов — может помочь в уточнении формулы. (Создание точной формулы — оставим для учёных, т. к. это уже относительно

частный вопрос).

Рис. 18

Идём далее:

Объёмное строение сложных элементарных частиц

Настало время перейти от упрощённых представлений об элементарных частицах, к более точным. В чём же заключалось упрощение? Оно было в том, что сложные элементарные частицы, мы рассматривали как плоские образования, вернее, так, что кварки в них — лежали в одной плоскости (что в реальности — не так). Упрощённые представления были удобны, т. к. позволяли изобразить сложную элементарную частицу (вернее, вид её сверху) — на плоском листе бумаги. Однако теперь нам предстоит увидеть, что на самом деле, все сложные элементарные частицы — выходят за рамки плоскости, т. е. имеют более объёмное строение:

Для начала, покажем, как выглядят протон и нейтрон, на самом деле — см. рис. 19. Почему частицы обретают такое строение? Есть две веские и естественные, причины:

Во-первых, центры кварков, в такой частице — оказываются совмещёнными в одной точке. Чтобы продемонстрировать это, определим расположение центров кварков, по отношению к их «полюсам» — см. рис. 20. Как видно, центры кварков — располагаются на вершинах правильных пирамид, и совмещаются именно при таком угле сворачивания, какой показан на рис. 20. Указанное расположение центров кварков, т. е. в одной точке — лучше отражает тот факт, что сложная элементарная частица существует как единое целое. Подобным образом, можно построить объёмные структуры и других элементарных частиц, см. примеры на рис. 21.

Рис. 19

Рис. 20

Рис. 21

Вторая причина появления объёмности у сложных элементарных частиц — заключена в том, что мы пренебрегли нюансом геометрии вакуума, показанным на рис. 22. На рис. видно, что в рамках одной плоскости, в среде вакуума, невозможно существование треугольников, направленных вершинами в противоположные стороны. Это — явно исключает возможность существования в плоском виде таких сложных элементарных частиц как нейтрон, мезон, протон и т. д.

Рис. 22

Итак, двух причин — достаточно, чтобы объяснить, почему все сложные элементарные частицы обретают определённое объёмное строение. При этом, объёмные изображения частиц — находятся в соответствии с плоскими изображениями, но

отличаются наличием углов между образующимися, вместо треугольников, гранями.

Имея объёмное представление о таких элементарных частицах как протон, нейтрон и пи-мезон — мы уже можем перейти к объяснению строения более высокого уровня вещества, — т. е. атомных ядер.

Основы постнеклассической ядерной физики

Внутреннее строение атомных ядер — является одной из, в целом, нерешённых задач, на неклассическом этапе. Далее, постнеклассически, в наглядном, геометрическом виде, без использования формул, мы увидим причины всех основных свойств ядер. Также увидим неразрывную связь структуры элементарных частиц и атомных ядер, т. е. как строение ядер — вытекает из геометрии элементарных частиц.

Строение ядра дейтерия

Не считая ядра атома водорода (т. е. протона), самое простое атомное ядро — это ядро атома дейтерия, состоящее из протона и нейтрона. Наглядно, строение этого ядра, с точки зрения постнеклассических представлений — показано на рис. 23.

Рис. 23

Как видно, ядро представляет правильную геометрическую фигуру, замыкающую некоторую область пространства. Протон и нейтрон, при этом — геометрически подходят друг другу. Также, как видно на рис., атомное ядро — представляет замкнутое движение, где замкнутые движения в протоне и нейтроне — взаимосвязаны в более крупное замкнутое движение, имеющееся в ядре как целом.

Ядро дейтерия, как известно, имеет спин 1, т. е. спины протона и нейтрона в нём — одинаковы, например, оба равны +1/2, так что в целом ядро имеет спин +1. Не существует ядер дейтерия со спином 0. Наглядная причина этого — видна из рис. 24. Как видно на рис., ядро со спином 0, не представляет замкнутой геометрической фигуры, и т. о. очевидно не является связанным состоянием протона и нейтрона. Также из рис. видно, что нуклоны (т. е. протон и нейтрон), если «развёрнуты вверх» — имеют спин +1/2, а если «вниз» — то спин –1/2 (причина такого поведения сложных частиц (протона и нейтрона, и других частиц в объёмном представлении) — станет ясной несколько позже).

Рис. 24

Далее, мы будем рассматривать только ядра в состоянии с положительным спином, т. к. ядра с противоположным спином — являются их зеркальными отражениями.

Если вспомнить о плоских представлениях элементарных частиц, очевидно, что при помощи их — нельзя увидеть ядро геометрически правильным. Однако всё становится на свои места, как только мы перешли к объёмным изображениям элементарных частиц, и увидели ядро дейтерия в объёмном представлении.

Геометрическая красота, присущая наглядному строению ядра дейтерия, и замкнутость его фигуры — уже пол-объяснения, почему ядро дейтерия — нерадиоактивно (являясь т. о. одним из двух стабильных изотопов водорода). Кроме того, такое строение — объясняет, почему спины протона и нейтрона в этом ядре одинаковы. Геометрически, это единственно возможная конфигурация ядра дейтерия.

Устройство изотопов ядер первого ряда таблицы Менделеева

Первый ряд таблицы Менделеева, как известно — включает два элемента: водород и гелий. У водорода — открыто 7 изотопов (включая широко известные, первые три — протон, дейтерий и тритий), а у гелия — 8 изотопов (также вместе с широко известными, первыми двумя, гелием-3 и альфа-частицей (= ядром гелия 4)).

Поделиться:
Популярные книги

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Плохая невеста

Шторм Елена
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Плохая невеста

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Николай I Освободитель. Книга 5

Савинков Андрей Николаевич
5. Николай I
Фантастика:
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 5

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол