Мир вокруг нас
Шрифт:
Рис. 61
Можно взглянуть на эти ядра и так: литий-6 — как бы состоит из альфа-частицы (в центре), в соединении с ядром дейтерия, но расколовшимся на верхний протон и нижний нейтрон, слившись т. о. с альфа-частицей в единое ядро. Сумма смещений кварковой плотности в образовавшемся ядре — делает силу связи нуклонов в нём более высокой, чем просто сумма связей нуклонов в альфа частице и дейтерии по отдельности, см. рис. 62. Т. о. образование
Рис. 62
Литий-6, в отличие от лития-7 — имеет место для ещё одного (бокового) нейтрона, чем объясняется (на несколько порядков) более высокая, по сравнению с литием-7, способность этого изотопа поглощать (тепловые) нейтроны [14]. Литий-7 — представляет синтез в едином ядре — альфа-частицы и ядра трития, хотя тритий — также разделился на два нейтрона и протон, расположившиеся по разные стороны от плоскости симметрии ядра (см. рис. 61).
Обратим, ещё раз, внимание, что нейтроны, в том же положении, что и в литии-6 и -7 (нижние боковые нейтроны), в водороде-5 и -7 — могли улететь (распад с вылетом нейтронов), а в гелии-6 и -8 — были связаны сильнее, но могли распасться (b– распад). В литии-6 и -7 же, нейтроны в этих положениях — связаны настолько сильно, что даже их распад, как уже отмечалось — становится запрещённым (невыгодным). На этом примере — наглядно виден быстрый рост силы связи нейтронов в ядре, с увеличением числа протонов (аналогично — и для случая протонов (вылетающих при распаде лития-4 и -5, но связанных в литии-6 и далее)).
Рост связи нуклонов в целом (и протонов, и нейтронов) — у последующих ядер элементов, постепенно становится более медленным, а после ядра (изотопа) никеля-62 (элемент 4-го ряда таблицы Менделеева, о котором — позже), сила связи нуклонов — постепенно снижается. Поэтому образование элементов более тяжёлых, чем никель, как известно — не даёт энергии, а наоборот, поглощает энергию. До никеля же — т. к. энергия связи нуклонов в ядре растёт с увеличением числа нуклонов, реакции идут с выделением энергии. Причём наибольшее выделение энергии (в расчёте на нуклон) даёт как раз образование ядер элементов в самом начале таблицы Менделеева (в особенности, как уже говорилось, изотопа 4He).
Далее: В структуре обоих стабильных ядер, лития-6 и лития-7 — виден кор, в виде альфа-частицы, а значит, нижний энергоуровень (т. н. базовый, или нулевой) — тут заполнен, в отличие от ядер лития-4 и -5, не имевших кора (что впрочем, давало им некоторую выгоду). Спин ядра лития-6 (1) и лития-7 (3/2) — наглядно виден из уже рассмотренных конфигураций этих ядер (рис. 61).
Далее: После стабильных изотопов лития-6 и -7 — начинаются нестабильные, нейтроноизбыточные изотопы, среди которых мы в т. ч. впервые встретим и разберём такое состояние ядра как: ядерные изомеры (имеющиеся у изотопа литий-10). Но обо всём по порядку:
Первый нестабильный, нейтронизбыточный изотоп лития, литий-8 (уже упоминавшийся ранее) — имеет спин 2, и устроен, как показано на рис. 63. Выгоду образования именно такой конфигурации — можно усмотреть в наличии тринейтрона (выгода которого — аналогична уже рассматривавшейся на примере водорода-6). Кроме того, в пользу наличия тринейтрона в литии-8, свидетельствует то, что ядра предыдущих элементов, содержащие тринейтрон — образуют закономерный ряд, ведущий к литию-8, это: водород-6 — гелий-7 — литий-8.
Рис. 63
При
В литии-8, отсутствие нейтрона на базовом энергоуровне — впервые становится стабильным, т. е. переход нейтрона из более высокого энергоуровня невыгоден (т. к. разрушает выгоду от тринейтрона, при этом, не приводя к вылету нуклона (нейтрона)). Однако, как уже говорилось, это не запрещает одному из нейтронов претерпевать b– распад, поэтому литий 8 в целом оказывается нестабильным.
Ещё одна выгода представленной конфигурации лития-8 — в том, что протон связан с двумя нейтронами сверху — в структуру, аналогичную ядру трития, и сила связи нуклонов в этом кластере трития — высока, как и в обычном тритии (хотя для этого, протон и вынужден находиться тут в более высоком энергетическом положении (см. на рис. 63)).
Далее — идёт литий-9, имеющий спин 3/2, и время полужизни 178,3 мс, что очень близко к времени полураспада лития-8 (839,4 мс). Вероятная структура лития-9 — так же может быть близка к литию-8, см. рис. 64. В этой структуре — сохранён механизм водорода-6, что делает её схожей с литием-8, но ценой расположения добавляемого нейтрона не на базовом, а на более высоком энергоуровне.
Рис. 64
Распад лития-9 идёт путём распада одного из нейтронов (b– распад, аналогично распаду лития-8). Но в 50,8% случаев, при распаде лития-9, дополнительно вылетает нейтрон, что объясняется возможностью передачи части энергии распада — нуклону (нейтрону), связанному относительно слабо, и находящемуся на более высоком энергетическом уровне (в литии-9 — это, очевидно, нейтрон, добавленный последним). Его относительно слабая связь, и расположение на высоком энергоуровне — повышают выгоду (возможность) его перехода в базовое состояние вне ядра (т. е. вероятность вылета нейтрона), в процессе распада ядра. Но ход этому — может дать только b– распад (другого) нейтрона.
Далее, мы подошли к литию-10 — изотопу, имеющему два изомера (с явлением изомерии мы встречаемся впервые). Изомер — это возбуждённая конфигурация ядра, переход из которой в основное состояние, по тем или иным причинам, затруднён (что приводит к повышенному времени жизни). Обычно, конфигурация изомера — весьма выгодна, и переход из неё в основное состояние — происходит через ряд менее выгодных состояний. Поэтому ядро может задерживаться в такой возбуждённой конфигурации, которая и называется изомером.