Мир вокруг нас
Шрифт:
Рис. 110
В этом ряду, чётность меняется так же периодично, как и в предыдущем ряду.
Начало ряда завершается на боре-12, что можно объяснять значимой переконфигурацией, при переходе к бериллию-11 (с гало-нейтроном [25]), а именно — предпочтением этим ядром конфигурации, показанной на рис. 111-а (с переходом нейтрона в ближнюю часть ядра, и сохранением кора в виде выгодного (почти стабильного) ядра бериллия-10 (о котором — позже)), вместо конфигурации на рис. 111-б (без гало-нейтрона). (Добавлением чётного числа нуклонов, конфигурация бериллия-11 на рис. 111-а, может быть достроена до фтора-19 или неона-19, имеющих
Рис. 111
Таблица 15 [8]
Изотопы бериллий-11 и фтор-19
Рис. 112
Рис. 113
С другого конца, ряд заканчивается на кислороде-15, т. к. протон, далее (к 15O) — некуда добавлять, кроме очевидно маловыгодного положения, в нижней части ядра (см. рис. 110). Поэтому переход ко фтору 16 должен происходить путём существенной переконфигурации. Итак, причина, почему чётность фтора-16 не подчиняется закономерности представленного ряда — также вытекает из геометрии.
Итак, мы рассмотрели два ряда ядер, с периодическим изменением знака чётности.
Теперь, рассмотрим подробнее, как зависит знак чётности ядер от расположения нуклонов с ближней или дальней части ядра: На примерах гелия-9, бериллия-11, фтора-19 и неона-19, а также переходов угдерод-11 — азот-12, и т. п. переходов, можно видеть, что один лишний или отсутствующий нуклон в ближней части ядра — даёт (имеет) положительную чётность; в дальней же части ядра, на примерах гелия-7, углерода-13 и т. п., один добавленный / недостающий нуклон — имеет, наоборот, отрицательную чётность. Чётное число нуклонов, в любой (ближней или дальней) части ядра — имеет положительную чётность.
Итак, мы рассмотрели некоторые, весьма упрощённые, основы чётности ядер, в её связи со структурой ядер. Как видно, чётность привязана к структуре (геометрии) ядер, что можно видеть наглядно.
Строение стабильных ядер
Стабильные ядра (= стабильные изотопы элементов) — широко распространены в окружающем Мире, и ложатся в основу макрообъектов, в то время как нестабильные (протон- и нейтронизбыточные) — не имеют широкого распространения, и в основном получаются искусственно (в ускорителях заряженных частиц, и т. п.), т. к. ограничены, в своём существовании, временем (распадаются в стабильные ядра). Роль стабильных ядер
Теперь, на постнеклассическом этапе, мы можем увидеть, наглядно, структуру стабильных ядер, и выяснить причины их стабильности (что рассмотрим на примере стабильных ядер элементов первых двух рядов таблицы Менделеева (всего 20 ядер, см. табл. 16)). Также включим в рассмотрение и некоторые нейтронизбыточные ядра, имеющие высокие времена жизни, более 12,32 лет = более, чем у трития (2 ядра, см. табл. 17).
Таблица 16 [8]
Стабильные ядра 1-го и 2-го рядов таблицы Менделеева
Таблица 17 [8]
Нестабильные ядра в первых двух рядах таблицы Менделеева, с временами жизни более, чем у трития (12,32 года)
Вообще, строение стабильных ядер — подчинено тем же правилам, что уже были рассмотрены (поэтому в целом, тут нужно только применять то, что уже известно).
Для начала, определим наиболее общие причины стабильности ядер:
Одна из этих причин — заключается в оптимальном соотношении числа протонов и нейтронов, в таких ядрах (отсутствие протонизбыточности или нейтронизбыточности, которые приводили бы к нестабильности). В свою очередь, величина этого оптимального соотношения — вытекает из наглядной геометрии, в т. ч. из строения альфа-частицы, см. рис. 114. На рис. — видно, почему соотношение протонов и нейтронов 1 : 1 — является оптимальным, и обеспечивает наибольшую силу связи нуклонов: как уже рассматривалось, альфа-частица — является полностью замкнутой, правильной геометрической структурой, с наибольшим сближением протонов и нейтронов, для их эффективного взаимодействия.
Рис. 114
Если сравнить альфа-частицу (ядро гелия-4) с ядрами с таким же числом нуклонов — водородом-4 и литием-4, то легко понять, из геометрии, почему последние, в отличие от альфа-частицы — являются крайне нестабильными (нейтрон- или протонизбыточными), и обладают малой силой связи нуклонов — см. рис. 115 и табл. 18.
Рис. 115
Таблица 18 [18]
Удельные энергии связи ядер с массовым числом 4
Итак, на примере альфа-частицы, оптимальным является соотношение числа протонов и нейтронов в ядре, как 1 : 1. Однако небольшое отклонение от этого значения — ещё не способно, само по себе, сделать ядро нестабильным: примеры: стабильные гелий-3, литий-7 и т. п. Причина их стабильности — видна в структуре, в т. ч. в отсутствии более выгодной, к которой ядро могло бы перейти (распасться):