Мир вокруг нас
Шрифт:
Изомеры некоторых ядер — могут существовать минуты, и даже годы (в т. ч. иногда дольше основного состояния) [8]. В случае лития-10, имеющего период полужизни всего 2,0x10–21 сек, время жизни его (предполагаемых, из наблюдений) ядерных изомеров — 3,7x10–21 сек и 1,35x10–21 сек, невелико, но всё же выше времени существования основного состояния (для второго изомера — хотя бы в пределах погрешности измерений [8]), поэтому данные возбуждённые состояния лития-10 — рассматриваются как изомеры.
Вероятная конфигурация ядра лития-10 в основном состоянии (со спином 1), и конфигурация, претендующая на роль его наиболее долгоживущего (явного) изомера (также со спином 1), — показаны на рис. 65. В конфигурации основного состояния на рис.,
Рис. 65
Далее: Причиной распада ядра лития-10 (в предполагаемом основном состоянии, со спином 1) — служит переход одного из высокоэнергетичных нейтронов, на более низкий, свободный энергоуровень, в результате чего, соседний нейтрон обретает возможность перейти на базовый энергоуровень вне ядра (ранее он не имел такой возможности, т. к. образовалась бы дырка в ядре), см. рис. 66. Вылетая, нейтрон — уносит с собой лишнюю энергию (ранее затраченную на образование ядра лития-10 (синтез этого ядра — требует поглощения энергии)). То, что литий-10 распадается через вылет нейтрона, а не посредством b– распада, и имеет крайне малое время жизни — объясняется представленной структурой ядра — наличием свободного энергоуровня (с отсутствием кластера трития), в отличие от ядер лития-8, -9 и -11 (о последнем — далее), распадающихся путём b– распада (см. табл. 4).
Рис. 66
Следующий изотоп, литий-11 — имеет гало из двух нейтронов, из-за наличия которого, радиус этого ядра — оказывается столь велик, что сравним с таковым для ядра изотопа гораздо более тяжёлого элемента, свинца-208 [15], т. е. изотопа 82-го элемента таблицы Менделеева.
Наличие двух гало-нейтронов, и b– распад лития-11, позволяют требовать от структуры ядра лития-11, чтобы как минимум, два нейтрона в нём — были развёрнутыми наружу, а энергоуровень, бывший свободным в литии-10 — был занят. Этому как раз соответствует структура ядра, представленная на рис. 67. (В подтверждение такой конфигурации ядра лития-11, можно привести и в целом аналогичную структуру аналогичного изотопа следующего элемента, бериллия-14, имеющего четыре гало-нейтрона [16], см. рис. 68).
Рис. 67
Рис. 68
Как и в литии-10, в ядрах лития-11 и бериллия-14, имеется более высокий энергетический уровень, на котором, у последних — расположились гало-нейтроны. Спины нуклонов на этом энергоуровне, как уже говорилось, могут иметь особенности. Чтобы разобраться в них, представим, забегая вперёд, изотоп углерода-8, см. рис. 69. В этом ядре, три протона имеют положительный спин, а три — отрицательный. Теперь возьмём литий-11, и заменим гало-нейтроны на протоны в этом же положении, и попробуем предположить их спин, см. рис. 70. Как показано на рис., из аналогии с углеродом-8, т. к. три протона — имеют положительный спин, то четвёртый протон — может определяться уже как имеющий отрицательный спин (на рис., он и выглядит перевёрнутым). Теперь вернём, на место протонов, гало-нейтроны, и т. о. увидим, что эти нейтроны, находящиеся на том же энергоуровне, что протоны — тоже могут иметь взаимно противоположные спины. Если эти
Рис. 69
Рис. 70
Рассмотрим каналы распада лития-11 (табл. 4). Как видно из табл., литий-11 претерпевает b– распад, что говорит о достаточной связи (выгоде) всех нейтронов в ядре, и занятости более низких энергоуровней (кроме свободного положения в базовом энергоуровне, необходимого для механизма водорода-6), что как раз соответствует уже рассмотренной структуре лития-11 (рис. 67). В 86,3% случаев, b– распад сопровождается вылетом нейтрона, что так же легко объяснимо этой структурой, т. к. она схожа с литием-9, в котором преобладает такой же канал распада.
Как и в литии-9, в литии-11 возможен и чистый b– распад, без дополнительного вылета нейтронов (что также может объясняться сходством структур).
Наличие двух дополнительных нейтронов в литии-11, с учётом их весьма слабой связи (гало-нейтроны) — добавляет возможность ещё нескольких, хотя и редких, путей b– распада — с эмиссией двух нейтронов (4,1%), и трёх нейтронов (1,9%).
Ещё более редкие пути распада (с вылетом ядра дейтерия, и т. п. (табл. 4)) — опускаем.
Далее — следует малоизученный изотоп литий-12 (о времени жизни этого изотопа известно лишь, что оно меньше 10 нс), распадающийся через вылет нейтрона. Вероятная структура этого ядра — показана на рис. 71. Возможность этой структуры, т. е. связанность нейтронов в ней — подтверждается существованием изотопа бериллия-16 (последний изотоп бериллия, имеющий время полужизни 6,5x10–22 сек, и распадающийся путём вылета двух нейтронов) [8], структура которого — представляется аналогичной, см. рис. 72. Очевидно, что распад лития-12 и бериллия-16, исходя из представленных конфигураций — должен быть аналогичен, по механизму, распаду лития-10, что объясняет известный / наблюдаемый вылет одного / двух нейтронов.
Рис. 71
Рис. 72
Далее: Литий-13 — последний изотоп лития. Как и литий-12 — он малоизучен (спин этого ядра — напрямую неизвестен). Структуру ядра лития-13 (возможное основное состояние), можно получить, добавив нейтрон в вакантное место, имеющееся в литии-12 (и бывшее заполненным в ядре гелия-10 и изомере лития-10), см. рис. 73. Как видно, все, наиболее низкие и выгодные места для нейтронов, в этом ядре — заполнены, и добавлять нейтроны, в общем, больше некуда, поэтому неудивительно, что пока — это последний известный изотоп лития.
Рис. 73
Итак, мы рассмотрели структуру и объяснения свойств ядер всех 10 изотопов элемента лития. Вместе с ядрами водорода и гелия, мы т. о. прошлись по 25 первым изотопам таблицы Менделеева, с т. зр. их наглядного внутреннего строения, объясняющего их различные свойства. Это — уже много значит, для дальнейшего построения ядер более тяжёлых элементов по аналогии (по выявленным правилам (закономерностям), но применяемым к новым и сложным ядрам).