Мистерия пирамид. Тайна Сфинкса.
Шрифт:
Котсуорт уехал из Египта, увозя с собой проект своего 13-месячного календаря, продолжительность месяцев в котором составляла 28 дней, причем месяцы всегда начинались в воскресенье, а завершались в субботу. Котсуорт заручился поддержкой Джорджа Истмена, основателя компании «Истмен Кодак», производившей фотокамеры. Истмен был убежден, что неудачный календарь оборачивается для бизнесменов громадными убытками. Его интерес к новому календарю, как и у Котсуорта, был чисто практическим, а никак не религиозным или мифологическим. Статистик Британских железных дорог прекрасно понимал, что более точный календарь способен принести громадную пользу людям, жизнь которых зависела от смены сезонов, показывая им время разливов Нила и начала сельскохозяйственных работ. Но чтобы доказать, что Великая пирамида могла использоваться не только для определения момента смены сезонов, но и для геодезической съемки земель после каждого ежегодного разлива Нила, нужен был другой праюичный человек.
Однажды - дело происходило в конце XIX века - Роберт Т. Баллард, австралиец по происхождению, сидя в вагоне поезда, медленно миновавшего плато в Гизе, взглянул на три главных пирамиды и заметил нечто странное. Поскольку монументы четко вырисовывались на фоне неба, а угол обзора по мере движения поезда постоянно менялся, Баллард подумал, что пирамиды вполне могли служить древним в качестве приборов - теодолитов, если говорить на языке геодезистов - для геодезической съемки и триангуляции.
Инженер-железнодорожник по профессии, Баллард был знаком с основами прокладки маршрутов и определения прямых линий. Он понимал, что определение границ земельных владений представляло серьезную проблему на берегах Нила, особенно в Нижнем Египте, где ежегодные разливы затапливали земли на огромных пространствах, смывая практически все межевые знаки между имениями землевладельцев. Поэтому ежегодное восстановление межевых знаков имело крайне важное значение, и пирамиды существенно облегчали эту задачу. Единственным инструментом, который, как писал Баллард в своей книге, изданной в 1882 году и гордо озаглавленной «Решение загадки пирамид», был необходим древним геодезистам, являлась переносная модель Великой пирамиды в центре круглой доски-панели с указанием сторон света. Египтянам оставалось только направить северную метку доски на север, сориентировать модель пирамиды так, чтобы на ней было то же распределение света и тени, что и на реальной пирамиде, и - прочесть показания. Это было совсем нетрудно. Балларду стало ясно, что пирамиды постоянно использовались для того, чем геодезисты занимаются постоянно: для измерений площади земель при посредстве метода целых треугольников с отношением сторон 3—4—5.
Гипотеза Балларда подтверждает точность свидетельств Геродота в его записках о Египте. Страна в древности была густо заселена на плодородных землях Нильской долины. По некоторым оценкам, плотность населения составляла примерно 700 человек на квадратную милю. Чтобы поддерживать мир и справедливость, писал Геродот, «этот царь разделил землю... так, чтобы каждому досталось по четырехугольнику одинаковой величины... и на всех наложил подать. Но ко всем, от чьего надела река смыла хоть небольшую часть... он послал надсмотрщиков, чтобы проверить, насколько меньше стала его земля, чтобы тот владелец платил подать только за ту землю, которая у него осталась. Таким образом, мне кажется, произошла геометрия, которая оттуда [71] была занесена в Грецию».
71
из Египта
Геродот и Баллард признали, что геометрия - слово, заимствованное из греческого и означающее «землемерие», - возникла не из абстрактной математики, а из таких будничных, повседневных потребностей, как определение границы, у которой кончается надел одного владельца и начинается имение другого. Важный аспект, о котором Баллард не упомянул, а Геродот, возможно, имел в виду, - это то, что подобные ежегодные упражнения в геометрии со временем обрели религиозное значение. Каждый год разлив Нила и затопление огромных территорий как бы напоминали о возврате хаоса водной стихии - хаоса, из которого возник космос, представлявшийся в виде холма творения [72] . На этом холме-космосе предстояло установить порядок и справедливость, то есть совершенный ма’ат. Геометрия помогала возродить порядок, нарушенный наводнением, и вернуть вселенной утраченную гармонию и равновесие сил. Таким образом, геометрия восстанавливала на земле ту самую гармонию, которую фараон стремился установить среди своих подданных.
72
Холм творения - излюбленный образ египетской мифологии. В 1980-е гг. на раскопках гробниц фараонов были найдены руины кирпичной стены Шунет эль-Зебиб («Финиковая крепость»). Шунет эль-Зебиб представляет собой комплекс пирамид эпохи Древнего царства, непосредственных предшественниц ступенчатой пирамиды фараона Джосера. Иероглифы с именем Нехрихет (имя Джосера в качестве царя-Гора) были найдены в усыпальнице Хасекхемви, последнего царя II династии. Тщательные раскопки обширного комплекса Шунет эль-Зебиб позволили сделать замечательное открытие. Здесь была обнаружена громадная стена с нишевым фасадом, окружавшая со всех сторон искусственный песчаный холм, символизировавший «холм творения». В связи с ним можно вспомнить огромный холм в Эриду (Шумер), обнесенный подпорными стенками из такого же кирпича. Можно предположить, что египтяне хотели воссоздать шумерский остров Предков с его знаменитым храмом на платформе, возвышающимся над первозданным холмом. (Прим. пер.)
Одно из названий, данных египтянами своей родной земле, звучало как То-Мера, что означало «земля мр». Слово мр первоначально обозначало средний треугольник пирамиды и в более широком значении - саму
Как мы увидим ниже, Великая пирамида свидетельствует, что древним египтянам было известно, что Земля - круглая. Если бы мы, подобно людям XV века, выросли на исторической легенде о плавании отважного Колумба на трех крошечных каравеллах на запад, туда, где плоская Земля круто обрывается в космическую пропасть, это утверждение показалось бы нам почти невероятной фантазией о высоте интеллектуальных достижений обитателей Древнего мира. По сути дела, легенда о Колумбе и плоской Земле говорит нам скорее об отсталости Европы XV века, чем о седой древности. Жители Древнего Египта прекрасно знали, что Земля отнюдь не плоская, и по меньшей мере за 40 веков до Колумба имели достаточно мужества, чтобы посвятить свою жизнь подтверждении этой гипотезы.
Можно лишь удивляться, почему европейцам так долго не хватало смелости признать, что Земля - круглая, ибо многие образованные люди на протяжении обозримой истории пот нимали, что Земля имеет форму сферы. Взгляните на Луну во время полнолуния и спросите себя: «С какой стати Земля должна иметь другую форму?» Понаблюдайте за кораблем, приближающимся к горизонту, и вы увидите, что его корпус перестанет быть видимым задолго до того, как исчезнет верхушка последнего радара на верхней рубке. Звезды также указывают на сферичность Земли. Если вы отправитесь строго на север из любой точки Северного полушария, на небе непременно покажется северный небесный полюс, а с ним и все звезды, появляющиеся на ночном небе. Поверните на юг - и они исчезнут. Это наблюдение требует пояснений.
Во-первых, древние египтяне не боялись упорной кропотливой работы. Как свидетельствует комплекс в Набта-Плайя, они были опытными наблюдателями звездного неба по меньшей мере за несколько тысячелетий до начала эпохи Древнего царства. Они жили в стране, простирающейся с севера на юг. Звезды, восходившие над горизонтом в Верхнем Египте (на юге), казались более высокими в Нижнем Египте (на севере). Египтяне обратили внимание на эту разницу и использовали ее в своих наблюдениях.
Они учитывали ее и при выборе площадки для Великой пирамиды или, не исключено, каких-то более древних и еще не открытых сооружений, предшествовавших ей. Великая пирамида стоит почти точно на 30° северной широты. Слово «почти» употреблено здесь потому, что на самом деле она находится чуть к югу от этого меридиана. Почему это именно так - установил Ричард Проктор в процессе своих исследований астрономического использования Великой пирамиды. Если двигаться постоянно на север от экватора, на небесах появится северный полюс небесной сферы и будет подниматься до тех пор, пока на Северном полюсе он не окажется прямо над головой. Оказывается, широту достаточно легко измерять путем определения угла положения северного полюса небесной сферы над горизонтом. Если северный полюс небесной сферы находится на высоте 30° над горизонтом. Между тем это не совсем так, ибо при этом не учитывается атмосферная рефракция. Когда вы глядите на горизонт, вы смотрите через более плотную атмосферу, чем когда смотрите прямо перед собой. В связи с этой незначительной рефракцией наблюдение угла северного полюса небесной сферы дает неизбежную погрешность, которая уменьшается при приближении от экватора к полюсу. На меридиане 30° северной широты вам кажется, что вы продвинулись к северу чуть дальше, чем на самом деле. С другой стороны, Проктор доказал, что, если для определения широты вы используете солнце и тень без учета атмосферных эффектов, вам будет казаться, что вы находитесь значительно южнее относительно своего реального положения. Великая пирамида находится на расстоянии примерно 2,2 км к югу от линии прохождения 30° северной широты. Проктор считает этот факт бесспорным аргументом в пользу того, что древние египтяне использовали околополярные звезды для определения своего положения относительно оси север-юг на земной сфере.
Но поскольку египтяне знали, что Земля имеет форму сферы и знали свое местонахождение на ней, они, несомненно, задавались вопросом: каковы размеры Земли?
Теоретически ответить на это вопрос не так уж сложно. Прежде всего надо устроить астрономические обсерватории на разных широтах. В идеале эти обсерватории должны располагаться строго к югу и к северу друг от друга, но в точном математическом анализе можно использовать и данные, полученные и при менее точной ориентации обсерваторий. Затем надо выбрать какую-то одну звезду и определить угол ее апогея из каждой обсерватории. В качестве альтернативы можно измерять угол положения Солнца в полдень в определенных точках годового цикла, например, в день равноденствия или солнцестояния. Простые геометрические расчеты показывают, что разница между показаниями измерений зависит от разницы положения обсерваторий на разных широтах. Теперь надо перепроверить эти измерения в отношении других звезд или точек солнцестояния и равноденствия. Третий этап - это измерение географического расстояния между двумя наземными обсерваториями. На основании этих данных можно определить географическое расстояние, эквивалентное изменению широты на Г. Наконец, остается умножить расстояние, соответствующее Г, на 360 - число градусов в окружности. В итоге получим длину окружности Земли через точки полюсов.