Чтение онлайн

на главную - закладки

Жанры

Мозг: прошлое и будущее. Что делает нас теми, кто мы есть
Шрифт:

Чтобы оценить количество синапсов, требуется гораздо более трудоемкая процедура. Ученые тщательно окрашивают образцы взятой посмертно ткани мозга металлическим красителем, который особенно хорошо пристает к синапсам. Затем ткань мозга рассекают на тонкие слои, каждый меньше тысячной доли миллиметра в толщину, и изучают срезы при увеличении в 50 тысяч раз под электронным микроскопом. Подсчитав таким образом синапсы в большом количестве репрезентативных срезов, ученые экстраполируют результат и получают среднее количество синапсов в отделах мозга, откуда были взяты срезы [135] . Такой процесс показывает, что в коре человеческого головного мозга может быть до 10 тысяч синапсов на каждый нейрон [136] .

135

J. DeFelipe, P. Marco, I. Busturia, and A. Merchan-Perez, «Estimation of the number of synapses in the cerebral cortex: Methodological considerations», Cerebral Cortex 9 (1999): 722–732.

136

Опубликованные оценки количества синапсов на нейрон значительно разнятся, но большинство источников указывают результаты в диапазоне от тысячи до 10 тысяч, а некоторые даже больше.

Что

говорят такие количества клеток и синапсов о способностях мозга? Если мы ненадолго позволим себе согласиться с упрощенческой аналогией «мозг-компьютер» и представим себе, что каждый синапс сравним с компьютерным битом – переключателем, у которого есть две позиции, 1 и 0, в зависимости от того, активен синапс или неактивен, – получится, что мозг может хранить 100 тысяч гигабайт памяти, примерно столько, сколько нужно на 20 тысяч полнометражных фильмов в современном высоком разрешении (чтобы осознать масштабы, представьте себе, что к вам в голову целиком помещается «Netflix»). Но мозг – не жесткий диск, его обширный запас синапсов применяется в основном для передачи данных между клетками, а этот процесс меняет еще и силу каждого синапса. Многие синапсы задействуются и «обновляются» несколько раз в секунду. Так что держать в голове «Netflix» все-таки невозможно, но триллионы синапсов у вас в мозге способны обеспечивать куда более динамичные и разнообразные функции, чем устройство, способное хранить столько фильмов.

На уровне клеток и синапсов сложность мозга значительно нарастает из-за микроскопической Вселенной хитроумных элементов, составляющих каждую клетку. Каждая клетка несет 35 000 генов, которыми природа снабдила нас, людей. В разных структурах мозга профиль экспрессии генов (какие гены включены, а какие выключены) существенно разнится; у мышей одни лишь паттерны экспрессии генов позволяют нам идентифицировать более 50 смежных областей и подобластей мозга [137] . Каждая клетка мозга содержит также многочисленные органеллы, субклеточные структуры, которые выполняют задачи вроде хранения генетического материала и утилизации отходов. Среди органелл в мозге особенно распространены митохондрии, «клеточные энергоустановки»; они потребляют около 20 % всего запаса энергии, расходуемой организмом [138] . Если перейти на масштаб еще меньше, окажется, что в мозге содержится бесчисленное множество биоактивных молекул. Среди важных разновидностей этих молекул и около сотни нейромедиаторов и нейромодуляторов, о которых мы говорили в предыдущей главе, и крупные биологические молекулы, например, белки и ДНК, играющие в пределах каждой клетки весьма специфические роли. В сумме молекул в мозге больше, чем звезд во Вселенной, – их буквально миллиарды миллиардов миллиардов.

137

Y. Ko et al., «Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain», «Proceedings of the National Academy of Sciences» 110 (2013): 3095–3100.

138

D. Attwell and S. B. Laughlin, «An energy budget for signaling in the grey matter of the brain», «Journal of Cerebral Blood Flow Metabolism» 21 (2001): 1133–1145.

Однако многие нейрофизиологи скажут, что сложность мозга гораздо нагляднее видна не в количестве его компонентов, а во взаимодействиях между ними. В ведре воды молекул больше, чем в мозге, но поскольку все молекулы в ведре имеют одну и ту же скучную формулу H2O, в нем возможно лишь относительно небольшое количество взаимодействий нескольких конкретных типов. Биомолекулы мозга, напротив, обладают самыми разными структурами со множеством деталей и вступают в избирательные взаимодействия с определенными наборами других молекул в зависимости от их формы. Если каждый тип молекул в мозге обозначить точкой, а каждое взаимодействие – линией между парой точек, в результате получится огромный пушистый клубок пересекающихся линий, и для его интерпретации понадобится сложный вычислительный анализ.

Сложность молекулярных взаимодействий в клетках наблюдается во всех органах в организме, однако в мозге есть и дополнительный уровень сложности, характерный только для него, – это взаимодействия между клетками. Благодаря тоненьким аксонам и дендритам нейронов, а также влиянию астроцитов, которые запускают самые разные клеточные процессы по своим отросткам, клетки мозга способны дотягиваться и дотрагиваться до множества разных клеток одновременно. У отдельных нейронов таких отростков бывают сотни, и они действуют словно провода, передающие электрические импульсы. Аксоны, переносящие информацию из одной части мозга в другую, достигают нескольких сантиметров в длину и составляют светлую сердцевину мозга под корой – белое вещество. По некоторым оценкам, общая длина нервных волокон в белом веществе у нормальных взрослых превышает сотню тысяч километров – это в два с лишним раза больше окружности Земли, больше суммарной длины федеральных автострад на всей территории США [139] . Если же взять, к примеру, печень, мы обнаружим, что клеток в ней столько же, сколько в мозге, однако связи между ними значительно ограниченнее [140] . Клетки печени компактны и контактируют лишь с десятком непосредственных соседок в ткани. Они живут в эпоху до шоссе и телефонов по сравнению с клетками мозга, обитающих в эру Интернета.

139

B. Pakkenberg et al., «Aging and the human neocortex», «Experimental Gerontology» 38 (2003): 95–99; «Table HM-20: Public Road Length, 2013, Miles by Functional System», Office of Highway Policy Information, Federal Highway Administration, www.fhwa.dot.gov/policyinformation/statistics/2013/hm20.cfm, данные на 21 октября 2014 г.

140

E. Bianconi et al., «An estimation of the number of cells in the human body», «Annals in Human Biology» 40 (2013): 463–471.

Задача составить схему всех связей между клетками мозга испугает даже Геракла от науки, однако именно этим занимается сравнительно новая отрасль нейрофизиологии – коннектомика [141] . Ученые, занимающиеся коннектомикой, применили те же процедуры, что и для подсчета синапсов при помощи электронного микроскопа, только на огромных масштабах. Они исследовали не отдельные ультратонкие срезы мозговой ткани, а систематически изучали каждый срез (каждую клетку, каждый синапс) в целых блоках ткани. Поскольку это очень трудно и стоит очень дорого, пока что были проанализировали только блоки объемом меньше кубического миллиметра, однако в результате уже появилась новая информация о межклеточных

контактах.

141

Sebastian Seung, «Connectome: How the Brain’s Wiring Makes Us Who We Are» (Boston: Houghton Mifflin Harcourt, 2012).

Одну из первых статей по коннектомике опубликовали Уинфрид Денк, Себастьян Сеунг и их коллеги. Статья посвящена анализу маленького образца сетчатки глаза мыши; хотя сетчатка, строго говоря, не является отделом мозга, анатомически она очень близка к мозговой ткани и тоже считается частью центральной нервной системы [142] . Ученые применяли и автоматические методы обработки данных, и анализ изображений вручную (он занял 20 тысяч часов, к счастью, распределенных на несколько человек) и выделили в блоке ткани сетчатки 840 нейронов. Каждый нейрон контактировал в среднем со 150 другими клетками – примерно столько, сколько «френдов» у типичного пользователя Фейсбука. Только подумайте, сколько возможных контактов получится, если обобщить это число на все 100 миллиардов нейронов в мозге человека: если каждый из нейронов может контактировать со 150 случайно выбранными партнерами, значит, для каждой клетки возможно около 101389 конфигураций (единица с 1389 нулями). По сравнению с этим числом меркнут все числа, с которыми мы сталкиваемся в живой природе, даже число атомов в известной Вселенной, как полагают, составляет всего 1080 (единица с 80 нулями) – сущий пустяк. Конечно, рассчитывать конфигурации подобным методом – очень произвольный подход к изучению структуры мозга, однако результат все же показывает, как поразительно многообразны паттерны связности между клетками мозга, по крайней мере, теоретически.

142

M. Helmstaedter et al., «Connectomic reconstruction of the inner plexiform layer in the mouse retina», «Nature» 500 (2013): 168–174; John E. Dowling, «The Retina: An Approachable Part of the Brain» (Cambridge, MA: Belknap Press of Harvard University Press, 1987).

* * *

Когда задумываешься о числовом выражении невероятной сложности мозга, легко поддаться на соблазны сакрализации мозга. Мы пасуем перед его хитросплетениями и готовы признать, что мозг – это загадка под покровом тайны в ореоле мистицизма. Нам уже не очень важно, что создало мозг – высшая сила или эволюция; вопрос в другом – как разобраться в его механизмах? Если у нас возникает искушение оставить надежду когда-нибудь понять, что такое мозг, и выяснить, каковы его чудесные способности, то, вероятно, мы просто считаем, что задача разом охватить деятельность миллиардов клеток, триллионов связей и октильонов молекул попросту не по силам человеческой изобретательности. Но отчаяться мы еще успеем, а пока зададимся вопросом, в какой степени астрономические количества клеток и связей в человеческом мозге необходимы для объяснения его функционирования. Если отлить из ведра воды одну каплю, разницы никто не заметит, более того, мы можем описать содержимое ведра в физических терминах, не имеющих отношения к отдельным капелькам. А если так, возможно, стоит спросить, в какой степени отдельные клетки и их связи влияют на функционирование мозга в целом?

На этот вопрос есть несколько ответов, отчасти неожиданных. Один из них опирается на размеры мозга. Нормальный объем мозга у взрослых людей колеблется в пределах 50 % – от литра до полутора [143] . При этом объем мозга лишь слабо коррелирует с интеллектом – по подсчетам ученых, он отвечает лишь за 10 % вариабельности IQ [144] . Иногда различия в объеме мозга объясняются разницей в плотности клеток, однако размер коррелирует и с отклонениями в общем количестве клеток мозга, по крайней мере, у мышей, для которых доступны такие данные [145] . Так что вероятно, что размеры мозга у людей значительно различаются и из-за количества содержащихся в них клеток и связей, но эти отклонения лишь слабо влияют на ментальные функции. Колебания количества мозговых клеток могут быть связаны и с возрастом, и с болезнями, и это зачастую не оказывает видимого воздействия на когнитивные способности. При нормальном старении объем мозга снижается примерно на 0,4 % в год, а при болезни Альцгеймера, даже до постановки диагноза, – более чем на 2 % в год [146] . Напрашивается мысль, что человек может пережить гибель миллиардов клеток мозга и при этом ощущать разве что легкие когнитивные расстройства. Как видно, не все клетки мозга сакральны.

143

J. S. Allen, H. Damasio, and T. J. Grabowski, «Normal neuroanatomical variation in the human brain: an MRI-volumetric study», «American Journal of Physical Anthropology» 118 (2002): 341–358.

144

A. W. Toga and P. M. Thompson, «Genetics of brain structure and intelligence», «Annual Review of Neuroscience» 28 (2005): 1–23.

145

S. Herculano-Houzel, D. J. Messeder, K. Fonseca-Azevedo, and N. A. Pantoja, «When larger brains do not have more neurons: Increased numbers of cells are compensated by decreased average cell size across mouse individuals», «Frontiers in Neuroanatomy» 9 (2015): 64.

146

N. C. Fox and J. M. Schott, «Imaging cerebral atrophy: Normal ageing to Alzheimer’s disease», «Lancet» 363 (2004): 392–394.

Особенно ярко видно, что отсутствие нервных клеток может компенсироваться, на примере редкого и весьма примечательного врожденного дефекта. В 2014 году в одну китайскую клинику обратилась женщина 24 лет с жалобами на тошноту и головокружение [147] . В прошлом у этой женщины наблюдались сложности с чувством равновесия, а ходить и говорить она научилась сравнительно поздно – к семи годам. Когда врачи провели сканирование ее мозга, оказалось, что у нее нет целого отдела мозга – мозжечка. Мозжечок влияет на чувство равновесия и координацию движений, к тому же плотность клеток в нем особенно велика – мозжечок составляет всего 10 % массы мозга, но содержит 80 % нейронов, и в данном случае их просто не было! Тем не менее эта женщина прожила без мозжечка почти четверть века, вышла замуж, родила ребенка и вела относительно нормальную жизнь – у нее лишь был «слегка сниженный интеллект и двигательные расстройства средней степени».

147

F. Yu, Q. J. Jiang, X. Y. Sun, and R. W. Zhang, «A new case of complete primary cerebellar agenesis: Clinical and imaging findings in a living patient», Brain 138 (2015): e353.

Поделиться:
Популярные книги

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Прорвемся, опера! Книга 3

Киров Никита
3. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 3

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Офицер Красной Армии

Поселягин Владимир Геннадьевич
2. Командир Красной Армии
Фантастика:
попаданцы
8.51
рейтинг книги
Офицер Красной Армии

Волхв пятого разряда

Дроздов Анатолий Федорович
2. Ледащий
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Волхв пятого разряда

Вамп

Парсиев Дмитрий
3. История одного эволюционера
Фантастика:
рпг
городское фэнтези
постапокалипсис
5.00
рейтинг книги
Вамп

Младший сын князя. Том 3

Ткачев Андрей Юрьевич
3. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 3

Шахта Шепчущих Глубин, Том II

Астахов Евгений Евгеньевич
3. Виашерон
Фантастика:
фэнтези
7.19
рейтинг книги
Шахта Шепчущих Глубин, Том II

Наследник пепла. Книга I

Дубов Дмитрий
1. Пламя и месть
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга I

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9