Мозг: прошлое и будущее. Что делает нас теми, кто мы есть
Шрифт:
В узких закоулках, заполненных жидкостью, которые вьются между клетками мозга, идет бурная активность иного рода, не признающая типичных культурных рамок «мозг-компьютер». Именно в этих крошечных полостях и происходит по большей части химическая жизнь мозга. У некоторых само представление о химических реакциях в мозге ассоциируется с психоделическим опытом употребления ЛСД и каннабиса, но с точки зрения нейрофизиолога словосочетание «биохимия мозга» относится в первую очередь к нейромедиаторам и схожим с ними молекулам-нейромодуляторам. У млекопитающих коммуникация между клетками мозга опирается в основном на нейромедиаторы, которые выделяют нейроны в своих пресинаптических окончаниях. Нейромедиаторы выделяются, когда пресинаптический нейрон «выстреливает», а затем быстро воздействуют на постсинаптический нейрон при помощи особых молекулярных «бейсбольных перчаток» – рецепторов нейромедиаторов – и меняют вероятность «выстреливания» постсинаптической клетки. При нейроноцентрическом представлении о мозге нейромедиаторы в основном служат средством передачи электрических сигналов от нейрона к нейрону. Если считать, что биоэлектрическая активность нервной системы и в самом деле lingua franca мозга, такая точка зрения вполне оправдана.
Но теперь представим себе альтернативный химиоцентрический подход, согласно которому
107
Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence C. Katz, Anthony-Samuel LaMantia, James O. McNamara, and S. Mark Williams, eds., «Neuroscience», 2nd ed. (Sunderland, MA: Sinauer Associates, 2001).
108
John E. Dowling, «The Retina: An Approachable Part of the Brain» (Cambridge, MA: Belknap Press of Harvard University Press, 1987).
Воздействие нейромедиаторов определяется также факторами, не зависящими от нейронов: важная роль нейроглии заключается еще и в утилизации части выработанных нейромедиаторов. Если темп потребления нейромедиаторов глиальными клетками меняется, количество нейромедиаторов регулируется примерно так же, как уровень воды в ванне, если закрыть или открыть слив. Кроме того, глиальные клетки испускают собственные сигнальные молекулы, которые иногда называют «глиомедиаторы». Глиомедиаторы, как и нейромедиаторы, вызывают кальциевые сигналы и в нейронах, и в других глиальных клетках. Функциональное воздействие глиомедиаторов на поведение и когнитивные процессы – важная тема современных исследований [109] .
109
D. Li, C. Agulhon, E. Schmidt, M. Oheim, and N. Ropert, «New tools for investigating astrocyte-to-neuron communication», «Frontiers in Cellular Neuroscience» 7 (2013): 193.
Кроме того, на воздействие нейрохимикалий сильно влияет не зависящий от клеток процесс диффузии – пассивного распространения молекул, обусловленный их случайным движением в жидкости. Диффузия вызывает и спонтанную дисперсию капелек масла по поверхности лужи, и бесцельную пляску микроскопических частиц в молоке – так называемое броуновское движение. Она же влияет на постсинаптическую активность нейромедиаторов, причем весьма существенно; как именно это происходит, мы пока не понимаем, но знаем, что это совсем не похоже на упорядоченную передачу информации по контактам между нейронами, будто по проводам. Некоторые нейромедиаторы и большинство нейромодуляторов славятся именно своей способностью распространяться из синапсов посредством диффузии и воздействовать на далекие клетки, не связанные непосредственно с теми клетками, которые выработали эти вещества. Среди подобных диффундирующих молекул – дофамин, нейромедиатор, с которым мы уже сталкивались, когда обсуждали обучение за вознаграждение у обезьян. Значимость диффузии дофамина особенно видна на примере действия наркотиков – кокаина, амфетамина и риталина. Эти препараты блокируют молекулы, задача которых – убирать дофамин после того, как синапсы его выработали. Таким образом, наркотики способствуют распространению дофамина в мозге, в результате чего он затрагивает множество клеток [110] .
110
J. O. Schenk, «The functioning neuronal transporter for dopamine: Kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate», «Progress in Drug Research» 59 (2002): 111–131.
Кроме того, диффузия нейромедиаторов лежит в основе явления помех при синаптической связи: это еще один неконвенциональный вид коммуникации в мозге, при котором молекулы, выработанные одним синапсом, попадают в чужие синапсы и влияют на их функции [111] . С точки зрения синапса, подвергнувшегося такому вторжению, это словно во время личного телефонного разговора с другом услышать, как в трубке бубнит третий голос. Есть много исследований, показывающих, что неожиданно высокие уровни помех наблюдаются между синапсами, использующими нейромедиатор глутамат, который вырабатывают 90 % нейронов в мозге и который известен в основном быстрым действием внутри отдельных синапсов [112] . Эти результаты примечательны тем, что ставят под сомнение идею синапса как фундаментальной единицы передачи информации в мозге. Ведь и помехи при синаптической связи, и более общие эффекты нейрохимической диффузии в мозге – это аспекты так называемой передачи информации по объему, поскольку действуют они вширь по объему тканей, а не по конкретным связям между парами нейронов [113] . Передача по объему возникает при перекрывании «волн» колеблющихся концентраций нейромедиаторов, и это больше похоже на рябь от дождя на поверхности пруда, чем на упорядоченное течение электричества по проводам.
111
B. Barbour and M. Hausser, «Intersynaptic diffusion of neurotransmitter», «Trends in Neuroscience» 20 (1997): 377–384.
112
N. Arnth-Jensen, D. Jabaudon, and M. Scanziani,
113
K. H. Taber and R. A. Hurley, «Volume transmission in the brain: Beyond the synapse», «Journal of Neuropsychiatry and Clinical Neuroscience» 26 (2014): iv, 1–4.
Так что с точки зрения нейромедиатора нейроны – это специализированные клетки, помогающие формировать концентрации нейрохимических веществ в пространстве и времени наряду с нейроглией и процессами пассивной диффузии. Нейромедиаторы, в свою очередь, побуждают клетки мозга вырабатывать больше нейромедиаторов – и местно, и удаленно. Каждый раз, когда воспринимается чувственный стимул или принимается решение, мозг захлестывают бурные волны нейромедиаторов, которые смешиваются с фоновыми химическими веществами, соотношение которых постоянно меняется во всем межклеточном пространстве мозга. Если смотреть на все сквозь это мутное химическое варево, электрические свойства нейронов кажутся почти что и неважными – на их место подошел бы любой достаточно быстродействующий механизм преобразования химических сигналов. И в самом деле, в нервной системе некоторых мелких животных, например, нематоды Caenorhabditis elegans, электрические сигналы гораздо слабее, а потенциалы активности не зарегистрированы [114] .
114
S. R. Lockery and M. B. Goodman, «The quest for action potentials in C. elegans neurons hits a plateau», «Nature Neuroscience» 12 (2009): 377–378.
Такое представление о мозге гораздо больше напоминает воззрения древних мыслителей – только здесь не четыре жидкости, а сотня жизненно важных субстанций, соперничающих за влияние во внеклеточных кулуарах мозга, не говоря уже о тысячах веществ, которые взаимодействуют внутри каждой клетки. «Химический мозг» – не очень зрелищный, зато биологически обоснованный противовес сверкающему «технологическому мозгу» компьютерной эпохи и эфирному мозгу, действующему по законам квантовой физики и статистической механики. К тому же легко представить себе, что химический мозг – это прямой потомок первичного бульона из протобиологических реагентов, из которого и возникла жизнь в архейскую эру на юной планете Земля. А еще химический мозг – близкий родственник химической печени, химических почек, химической поджелудочной железы, то есть субпродуктов, которые мы едим, всех органов, чьи функции строятся на выработке и переработке жидкостей. Тогда с мозга отчасти спадает сакральный флер.
Я один из тех, кому, к сожалению, довелось познакомиться с культовой классической книгой Дагласа Хофштадтера «Гедель, Эшер, Бах» лишь в зрелые годы. Когда в колледже мой сосед по общежитию соблазнял меня поразительными парадоксами, которых так много в этой книге, я по уши закопался в домашние задания по физике и химии. Юные годы давно остались позади, прошло много лет, и вот я наконец взялся за «Геделя, Эшера, Баха», когда у меня не было уже ни терпения, ни юношеской живости ума, чтобы уделить этим парадоксам должное внимание. Я люблю Баха, обожаю разглядывать гравюры Эшера и очень интересуюсь загадочными работами Геделя, однако мне, увы, не хватило широты мировоззрения, чтобы насладиться рассуждениями автора о сознании, отдающими мистицизмом. В одной главе Хофштадтер объясняет структуру нервной системы согласно представлениям 70-х, и это перечисление сухих фактов на удивление похоже на современные научные воззрения и в некотором смысле показывает, как медленно прогрессировала все это время нейрофизиология. Кроме того, это описание сплошь пронизано научным дуализмом. Автор целиком и полностью перенимает компьютерную аналогию и выдвигает гипотезу, что «любой аспект мышления можно рассматривать как описание на высшем уровне некой системы, которая на низшем уровне управляется простыми и даже формальными правилами» [115] .
115
Даглас Хофштадтер. Гедель, Эшер, Бах: эта бесконечная гирлянда / пер. М. Эскиной. (Самара: «Бахрах-М», 2001).
Однако один отрывок из «Геделя, Эшера, Баха» ярко отражает мысль, которую я стремлюсь донести до читателя в этой главе; речь идет об отношениях фигуры и фона в рисунках и других видах искусства. Хофштадтер говорит о тех случаях, когда фон можно рассматривать как полноправный компонент изображения, и самый известный пример этого феномена – рисунки, на которых изображена то ли ваза, то ли два профиля (см. рис. 4).
Рис. 4. Оптическая иллюзия «Ваза или лица»
В современной нейрофизиологии нейроны и биоэлектрическая активность нервной системы – это «фигура» на изображении мозга, а многие другие составляющие мозговой деятельности – это «фон». Такой гештальт сильнейшим образом повлиял на интерпретацию «мозг-компьютер» и на повсеместное распространения дуализма «мозг-тело». Но подобно тому как зрительное восприятие безо всякого труда переключается с лиц на вазу и наоборот, так и наше понимание мозга способно столь же легко вывести на первый план не-нейронные, неэлектрические черты мозговой деятельности, что сразу сделает мозг больше похожим на другие органы. Химические вещества и электричество, активная коммуникация и пассивная диффузия, нейроны и нейроглия – все это части механизмов мозга. Ставить одни из этих составляющих выше других – все равно что выбирать главные шестеренки в часовом механизме. Если повернуть одну шестеренку, это приведет в движение все остальные, если убрать любую из них, часы сломаются. Именно поэтому попытки свести когнитивные процессы в мозге к электрическим сигналам или к его «проводке» – нервным волокнам, по которым распространяются электрические сигналы, – в лучшем случае упрощенчество, а в худшем – заблуждение.