Наблюдения и озарения или Как физики выявляют законы природы
Шрифт:
Согласно Ньютону, для описания мира вещей достаточно указать (измерить) такие независимые величины: пространственные координаты и скорости (в какой-то один момент времени) всех материальных точек, их массы и действующие силы. Время и пространство рассматриваются при этом как «абсолютные»: они не зависят от объектов, их заполняющих, и от событий, в них происходящих. Все процессы сводятся к перемещениям материальных точек в пространстве и во времени, а сами время и пространство строго разграничены между собой — законы Ньютона устанавливают только взаимосвязи между массами и силами.
Такая «механика материальных точек» была математически обоснована Эйлером, Лагранжем,
Но в оптике, в частности, и в электродинамике в общем, отчетливо выявилась ограниченность этой «механики материальных точек».
Пока свет представлялся в виде продольных волн, можно было вообразить себе эфир как разреженный газ. Если же световые волны являются поперечными, тогда эфир должен рассматриваться как твердое упругое тело, которое при своей малой плотности должно быть тверже стали. Но при этом световой эфир должен еще быть полностью проницаемым — ведь небесные тела движутся сквозь него без помех, это установлено всеми измерениями их движений. Помимо того, эфир не должен обладать гравитационной массой, т. е. не должен притягиваться к другим телам.
Все эти свойства никак нельзя было согласовать между собой, уж очень фантастично они выглядели. Гипотеза эфира (точнее, эфиров — существовало много различных его теорий) оказалась недостоверной в самой своей основе.
Но чем ее заменить? Согласно Фарадею и Максвеллу, существует электромагнитное поле, даже электромагнитные волны, и они распространяются в вакууме, со скоростью света. Существует ли какая-нибудь среда в этом самом пустом пространстве, колебаниями которой являются эти волны? Если такая среда существует, то именно она является главной, так сказать, системой отсчета, и все движения нужно рассматривать относительно именно этой среды, относительно эфира.
Итак, возникает концептуальная проблема, проблема эфира — она даже не связана ни с какими экспериментами, а является проблемой обоснования теории Максвелла.
При этом есть эксперимент Майкельсона — Морли: скорость света не зависит почему-то от скорости источника — она не увеличивается, когда источник движется навстречу наблюдателю, и не уменьшается, когда источник удаляется, — но все это противоречит законам Ньютона!
Теперь нужно как-то объяснить результаты этого эксперимента — даже если не вдаваться глубоко в проблемы эфира.
Таким образом, перед физикой стоят две проблемы: общая проблема эфира и результаты опыта Майкельсона-Морли — и пока не ясно, связаны они друг с другом или нет.
Со времен Галилея известно, что если человек находится в каюте равномерно движущегося корабля и не может выглянуть наружу, то он не может определить, движется ли корабль по инерции или стоит на месте: мячик на горизонтальном столе остается неподвижным, а силы действуют так же, как на берегу. Математически это означает, что уравнения Ньютона не меняются при равномерном движении.
Ясно, что тем же свойством должны были бы обладать и уравнения Максвелла — но при таких преобразованиях они меняются (связано это с тем, что сила, по Ньютону, определяется через ускорение, а в электродинамике, в магнитном поле, согласно Лорентцу, она зависит и от скорости). Появляются две возможности исправить этот явный их недостаток: либо изменить сами уравнения, либо принять какие-то особые правила перехода от неподвижного наблюдателя к движущемуся.
Вольдемар Фойгт (1850–1919), известный своими работами по электродинамике, физике кристаллов и др., принимает вторую точку зрения — в уравнениях Максвелла он уверен, и в 1887 г. выводит первые такие правила преобразования длины
В 1889 г. появляется краткая, в несколько строк и безо всяких формул, заметка Джорджа Фрэнсиса Фитцджеральда (1851–1901): опыт Майкельсона-Морли можно объяснить, если принять, что все тела сокращаются в направлении своего движения. Но идею эту он дальше не разрабатывает, а своему другу Оливеру Хевисайду пишет: «Я совершенно не боюсь допустить ошибку и поэтому предлагаю самые сырые идеи в надежде, что они заставят задуматься других и тем будут способствовать движению вперед».
В 1894 г. X. А. Лорентц соглашается с идеей Фитцджеральда: «Я думал об этих опытах долго и безуспешно и наконец представил только одну возможность для выхода из создавшегося положения». Он продолжает развивать идею таких преобразований, которые приводили бы к сокращению размеров тел в направлении их движения. Окончательный результат он получил к 1899 г. (Эти формулы названы преобразованиями Лорентца, а сокращение длины называют сокращением Фитцджеральда-Лорентца.)
Великий математик Анри Пуанкаре с годами все больше занимался принципиальными проблемами физики. В 1898 г. он — с позиций скорее общефилософских, чем физических — критикует понятие одновременности: как два наблюдателя (возможно, движущихся) могут установить, что часы у них идут одинаково равномерно? Нет, как он говорит, такой реальной процедуры. В статьях 1900 и 1904 гг. Пуанкаре обрушивается на понятие эфира: «А наш эфир — существует ли он в действительности?». Но свое выступление 1904 г. он заканчивает пессимистически: нужны какие-то дополнительные гипотезы, вполне возможно, что старые принципы еще докажут свою справедливость.
Пуанкаре оставалось сделать лишь один шаг для построения теории относительности, практически все, что нужно, плюс колоссальный математический опыт, интуиция и энциклопедические знания — все это было, но решающий шаг так и не был сделан. Его предстояло совершить 26-летнему служащему Патентного бюро в городе Берне.
Пережив период глубокой юношеской религиозности, Альберт Эйнштейн (1879–1955) испытал в 12 лет потрясение, когда ему в руки попала книжка по евклидовой геометрии: утверждения, казалось бы, совсем не очевидные, «могли быть доказаны с уверенностью, исключающей всякие сомнения. Эта ясность и уверенность произвели на меня неописуемое впечатление».
11
Полное собрание сочинений Эйнштейна в 35 томах издается совместно Еврейским университетом в Иерусалиме (университет был открыт лекцией Эйнштейна в 1925 г.) и Институтом перспективных исследований в Принстоне, США, где Эйнштейн работал с 1933 г. до конца жизни. На русском языке издано в 1965–1967 гг. одно из самых полных собраний его научных работ в 4 томах, вышло 13 томов «Эйнштейновских сборников» Эйнштейновского комитета Академии наук СССР.
Эйнштейн нередко обсуждал философские проблемы с Бертраном Расселом и Куртом Геделем, когда все они жили в Принстоне. Помимо Канта, он штудировал Платона, Б. Спинозу, Д. Юма, Дж. С. Милля. Эти и некоторые другие сведения в основном из книг. Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989; Хофман Б. Альберт Эйнштейн, творец и бунтарь. М.: Прогресс, 1983 (авторы, известные физики, сами много общались с Эйнштейном). См. также: Зелиг К. Альберт Эйнштейн. М.: Атомиздат, 1966.
Птичка в академии, или Магистры тоже плачут
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
рейтинг книги
Офицер
1. Офицер
Фантастика:
боевая фантастика
рейтинг книги
Барон ненавидит правила
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Комендант некромантской общаги 2
2. Мир
Фантастика:
юмористическая фантастика
рейтинг книги
Леди Малиновой пустоши
Любовные романы:
любовно-фантастические романы
рейтинг книги
Возрождение Феникса. Том 2
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
И только смерть разлучит нас
Любовные романы:
любовно-фантастические романы
рейтинг книги
Собрание сочинений в пяти томах (шести книгах). Т.5. (кн. 1) Переводы зарубежной прозы.
Документальная литература:
военная документалистика
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
