Чтение онлайн

на главную - закладки

Жанры

Наблюдения и озарения или Как физики выявляют законы природы

Перельман Марк Ефимович

Шрифт:

И действительно, поскольку скорость кванта света при любом движении источника постоянна, то добавление или уменьшение его энергии (за счет кинетической энергии источника) ведет, согласно формуле Планка, к изменению частоты.

Первым теорию Эйнштейна приветствовал Макс Планк, он же первым продолжил ее развитие. Вероятно, наибольший вклад в ее описание внес известный математик Герман Минковский: он переписал результаты Эйнштейна в более современной математической форме (через тензоры), показал их геометрический смысл, ему, в частности, принадлежат вошедшие во всеобщее пользование термины «световой конус», «мировая линия» и т. д. Поэтому описание СТО как геометрии пространства-времени часто называют геометрией Минковского.

б. Парадокс
близнецов

До проявления интереса к СТО Минковский был не очень высокого ценил о физику. Он полушутливо говорил, что единственная польза, которую он из нее извлек, состояла в том, что ранее ему было неприятно садиться в трамвае на только освободившееся теплое сидение, но когда он понял, что тепло — это всего лишь движение молекул, чувство брезгливости исчезло (это высказывание Эйнштейн приписывал М. Гроссману).

Парадоксальные выводы теории относительности долго будоражили научные и околонаучные круги (до сих пор находятся дилетанты, пытающиеся ее опровергнуть).

Наиболее долго в печати обсуждался такой парадокс. Предположим, что один из пары близнецов отправляется на сверхбыстрой ракете в дальнее путешествие, часы у него в ракете идут медленнее, чем у брата, оставшегося на Земле, возвратившись, он оказывается моложе своего брата-близнеца. Здесь пока никакого противоречия нет — все в согласии с теорией относительности.

Теория относительности вызвала громадный поток публикаций, особенно возросший после окончания Мировой войны 1914–1918 гг.: письма ее автору доходили с написанным адресом «Европа, Эйнштейну». Знаменитый философ А. Бергсон (1859–1941, Нобелевская премия по литературе 1927) пишет книгу «Длительность и одновременность» и пробует вместить содержание теории относительности в рамки своей концепции интуитивизма, а известный этнограф В. Г. Тан-Богораз пытается доказать, что основные ее положения близки к представлениям чукотских шаманов о путешествиях душ в моменты медитации. Между этими крайними проявлениями была масса иных, не менее экзотических трактовок, популярностью пользовались и такие стишки: «Юная леди по имени Кэт\ Двигалась много быстрее, чем свет.\ Но попадала всегда не туда… \ Быстро помчишься — \ Придешь во вчера» — они должны были ясно показать справедливость второго постулата Эйнштейна, невозможность скорости, большей, чем скорость света! (Цит. по: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989.)

Но, говорят оппоненты, давайте обострим ситуацию. Пусть эти близнецы расстаются не на Земле, а в стыкованных рядом ракетах. Тогда ведь путешествовавший брат мог считать, что движется не он, а второй брат, и поэтому при встрече тот должен быть моложе!

Как будто возникает некое противоречие, названное парадоксом близнецов.

Парадокс этот, конечно, ложный: теория преобразований Лорентца и вообще теория относительности, о которой мы говорили, называется частной или чаще специальной (СТО) — она описывает лишь явления в инерциальных, т. е. не испытывающих ускорения системах (ускорения будут учтены в общей теории относительности — см. ниже). Поэтому становится очевидным, что поскольку для встречи братьев один из них должен был испытывать периоды ускоренного движения (разгон ракеты, ее разворот и торможение — для встречи с братом), то двигался именно он, и поэтому показания именно его часов, в том числе физиологических, определяющих возраст, должны быть меньшими.

Отметим, что в 1967 г. Джеральд Фейнберг (р. 1933) заметил такую особенность преобразований Лорентца: им не противоречит предположение, что существуют частицы, скорость которых всегда больше скорости света. Но такие частицы (их назвали тахионы, от греческого «тахес» — быстрый) не могут уменьшить свою скорость и взаимодействовать с обычными частицами. Некоторые энтузиасты и сейчас ищут

тахионы, но пока не найдены способы ни запретить их, ни обнаружить их проявления. (Наука, повторим, придерживается принципа «все, что не запрещено, может существовать».)

7. Соотношение масса — энергия

Со времен Ньютона в механике были два определения массы: второй закон Ньютона определяет так называемую инертную массу — соотношение между действующей силой и получаемым телом ускорением, а закон Всемирного тяготения определяет так называемую гравитационную массу (Ньютон безо всяких доказательств принял, что две эти массы численно равны).

Но если гравитационное поле ведет к образованию массы, то почему какая-то масса не может создаваться электромагнитным полем? Или по-иному: увеличивает ли наличие заряда инерционность тела, т. е. существует ли инертная электромагнитная масса? И если она существует, то полностью ли именно она обуславливает всю массу электрона?

Вопрос этот живо обсуждался в конце XIX в., обсуждается он и сейчас — решения пока не видно.

Первые расчеты электромагнитной массы электрона провел Дж. Дж. Томсон: можно ли считать его шариком, энергия которого обусловлена взаимодействием его частей, и сжимаемым согласно преобразованиям Лорентца? Минковский, человек эмоциональный, написал, что пытаться вводить твердый электрон в теорию Максвелла — это все равно что идти на концерт, заткнув уши ватой.

Но уже в конце 1905 г. Эйнштейн находит в рамках СТО более общий подход к подобным вопросам (доказывает его чуть позже): он выводит самую, наверно, знаменитую формулу в истории науки — ее все же придется написать:

Е = 2,

где Е — это энергия, содержащаяся в теле, m — масса тела, а через с, по традиции, обозначается скорость света в пустоте (с — первая буква латинского слова constantis — постоянный), с 300000 км/с.

Согласно этой формуле, если бы удалось целиком обратить в энергию массу одного грамма вещества, то выделилось бы девяносто триллионов джоулей, примерно столько же, сколько при сгорании двух миллионов тонн высокосортного бензина. Однако, как станет понятно дальше, это вовсе не столь просто осуществить: такое превращение возможно только при соединении половины грамма вещества с половиной грамма антивещества…

Но есть и другие пути, правда, далеко не столь эффективные. По этой теории, если два атома соединяются в молекулу, то масса молекулы чуть меньше, чем сумма масс обоих атомов — это уменьшение массы можно назвать дефектом массы, а можно, благодаря формуле Эйнштейна, назвать энергией связи. Таким образом, возникает двойственность: можно говорить, что атомы соединены в молекулу благодаря электромагнитным силам, действующим между ними, а можно сказать, что у них отняли малую толику массы, и они не могут разойтись, пока эта масса не будет им возвращена — нагревом, поглощением фотона, электрическим полем и т. п.

Выделение энергии связи в химических реакциях (например, при горении) представляется нам достаточно большим, но если эту энергию, по формуле, разделить на квадрат скорости света то доля теряемой массы окажется столь мала, что измерить ее в прямом эксперименте пока невозможно. Однако при соединении частиц (протонов и нейтронов) в атомные ядра доля теряемой массы (и выделяемой энергии) уже достаточно велика — она может составить до 0,8 % от всей массы при превращении четырех атомов водорода в атом гелия — это теоретический максимум. Именно такое и несколько меньшее энерговыделение и является источником светимости звезд. (Отложим дальнейшее обсуждение до рассмотрения ядерных и термоядерных реакций.)

Поделиться:
Популярные книги

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Чужак. Том 1 и Том 2

Vector
1. Альтар
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Чужак. Том 1 и Том 2

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Этот мир не выдержит меня. Том 4

Майнер Максим
Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Этот мир не выдержит меня. Том 4

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II