Чтение онлайн

на главную - закладки

Жанры

Наблюдения и озарения или Как физики выявляют законы природы

Перельман Марк Ефимович

Шрифт:

Предсказанный Дираком антиэлектрон был открыт в 1932 г. Карлом Д. Андерсоном (1905–1991, Нобелевская премия 1936 г.) в космических лучах и назван позитроном (гибрид латинского «позитивус» — положительный с греческим окончанием).

Впоследствии Дирак выдвинул гипотезу о том, что и другие частицы, такие, как протон, также должны иметь свои аналоги из антиматерии, но для описания подобных пар частиц и античастиц потребовалась бы более сложная теория. Существование антипротона было подтверждено экспериментально в 1955 г. Эмилио Сегрэ (1905–1989) и Оуэном Чемберленом (р. 1920), и они были удостоены Нобелевской премии в 1959 г. В настоящее время известны

и многие другие античастицы, практически для всех известных частиц — их так много, что премии за них не присуждают.

Вернемся к Дираку. В 1927 г. он положил начало новой области — квантовой электродинамике, о которой еще будем говорить, в 1931 г. выдвинул красивейшую (как и все его работы!) идею о возможности существования магнитных монополей (о ней мы уже говорили). Дирак также высказал предположение о том, что фундаментальные физические константы, например гравитационная постоянная, могут оказаться не постоянными в точном смысле слова, а медленно изменяться со временем. Ослабление гравитации, если оно вообще существует, происходит настолько медленно, что обнаружить его чрезвычайно трудно, но в последние годы некоторые астрофизики пытаются именно этими изменениями объяснить некоторые странности, характерные для очень далеких галактик.

И еще одно провидческое высказывание Дирака. Ко времени получения им Нобелевской премии (1933 г.) были известны следующие элементарные частицы: протон, нейтрон (он не сомневался, что будут найдены их античастицы), электрон, позитрон и, конечно, фотон. И вот Дирак говорит: «С общефилософской точки зрения, число различных типов элементарных частиц (по крайней мере, так кажется на первый взгляд) должно быть минимально, например один или самое большее два… Но из экспериментальных данных известно, что число различных типов гораздо больше. Более того, число типов элементарных частиц обнаруживает в последние годы весьма тревожную тенденцию к увеличению». И эта тенденция подтвердилась — к 1960-м гг. их можно было считать сотнями, поэтому неизбежным стало новое направление исследований: сокращение числа частиц, сведение их к некоему минимуму, но об этом позже.

В развитии квантовой механики нужно отметить, по крайней мере, еще три события. Это, во-первых, выход в 1932 г. книги фон Неймана «Математические основы квантовой механики» — несмотря на прошедшие с тех пор многие десятилетия, книга эта с каждым годом становится все более востребованной — идеи, в ней изложенные, все еще не полностью исчерпаны и использованы. Во-вторых, в 1948 г. Р. Фейнман дал новую математическую трактовку квантовой механики, третью после матричной и волновой — через бесконечно кратные или континуальные интегралы (позже оказалось, что схожую процедуру ранее ввел Н. Винер в теории броуновского движения). В-третьих, Джон Белл в 1966 г. снова оживил давнюю проблему существования или несуществования скрытых (непосредственно не наблюдаемых) параметров квантовых систем, но об этой проблеме рассказывать еще рано — дискуссии о ней, горячие и противоречивые, продолжаются.

Заметим еще, что квантовая механика продолжила тенденцию объединения наук: с развитием квантовой теории фактически исчезла большая часть теоретической химии: структура и процессы образования молекул из отдельных атомов, взаимодействие молекул — все это теперь рассматривается в рамках квантовой механики как основы химической физики. В свою очередь, необходимость таких расчетов привела к развитию некоторых специфических методов приближенных квантовых расчетов. Постепенно, в основном через биохимию, такие

методы проникают и в биологию.

10. Туннельный эффект

Рассмотрим такой процесс: по гладкому столу катится шарик, перед ним препятствие — бугорок. Если у шарика достаточно большая скорость (кинетическая энергия) для подъема на высоту бугорка (при подъеме растет его потенциальная энергия за счет кинетической), он через бугорок перевалит, если нет — скатится обратно, т. е. отразится. Можно придумать такую же задачу где телу надо, например, преодолеть не механический бугорок, а область магнитного поля или отразиться от нее. Решения для макроскопических тел однозначные: или преодолевает, или отражается — все определяется соотношением энергий, кинетической у движущегося тела и потенциальной энергии препятствия (физики говорят: высотой потенциального барьера). И это потому, что можно, в принципе, точно определить величины энергий и тела, и барьера.

Но вот в квантовой теории все не так просто: согласно соотношению неопределенностей Гейзенберга, частица может на какое-то время отдать или получить добавочную энергию, нужно только, чтобы произведение величин этой энергии и этого времени не превышало постоянной Планка. Но поскольку явления такой «отдачи-получения» носят вероятностный характер, то частица с какой-то энергией может отразиться от потенциального барьера, а может и проскочить через него и тогда, когда ее энергия, казалось, достаточно велика для проскока, и тогда, когда она меньше, чем следовало бы. Нужно рассчитывать вероятности обоих процессов.

Первым такие особенности квантовой природы понял Г. А. Гамов и построил на этой основе теорию альфа-распада атомных ядер (вспомним, что при радиоактивном распаде ядер урана выделяются, в том числе, альфа-частицы; возникающие элементы, в частности торий, опять-таки являются радиоактивными). Дело в том, что если рассчитывать в рамках классической теории энергию альфа-частицы, испущенной ядром тория, то она должна быть равна 26 МэВ (единицы величин энергии описаны в Приложении), а на опыте оказывалось, что она около 5 МэВ — этого явно недостаточно для вылета из ядра.

Георгий (Джордж) Антонович Гамов (1904–1968) жил в Ленинграде. Будучи в командировке за рубежом и узнав об арестах своих друзей и коллег во время «Большого террора» 1930-х гг., остался заграницей. Гамов создал теорию реликтового излучения и эволюции звезд (см. ниже), теорию генетического кода (он автор трех теорий нобелевского уровня!), написал ряд великолепных научно-популярных книг. Он запомнился коллегам и тем, что придумывал множество розыгрышей и шуток. В знаменитом Массачусетсском технологическом институте Гамов как-то предложил своим студентам такое задание: некая цивилизация достигла высокого уровня развития, но колесо в ней не было изобретено — нужно придумать машины и всевозможные устройства этого мира, не использующие эффектов вращения. Результатом игры стал целый ряд серьезных изобретений.

Гамов рассмотрел такую картинку: ядро представляет собой «яму» на графике потенциальной энергии — по формуле Эйнштейна, масса ядра, т. е. связанных в нем частиц, меньше их полной массы в свободном состоянии. Поэтому можно считать, что потенциальная энергия частиц в ядре отрицательна, но так как частицы эти притягиваются друг к другу какими-то, в то время еще неясными ядерны-ми силами, то чтобы выскочить из ядра, нужно иметь достаточную кинетическую энергию или… просочиться сквозь барьер притяжения за счет принципа неопределенности.

Поделиться:
Популярные книги

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Хёвдинг Нормандии. Эмма, королева двух королей

Улофсон Руне Пер
Проза:
историческая проза
5.00
рейтинг книги
Хёвдинг Нормандии. Эмма, королева двух королей

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Отец моего жениха

Салах Алайна
Любовные романы:
современные любовные романы
7.79
рейтинг книги
Отец моего жениха

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6