Чтение онлайн

на главную - закладки

Жанры

Наблюдения и озарения или Как физики выявляют законы природы

Перельман Марк Ефимович

Шрифт:

Борн первым начал создавать единую физику кристаллов на атомистической основе и при этом использовал теорию удельной теплоемкости Эйнштейна. Затем он, основываясь на работах Лауэ и Дебая, рассмотрел вопрос о собственных колебаниях пространственной решетки кристалла и попытался вывести упругостные и электрические свойства кристаллов из атомного строения их решеток. Любопытно отметить обстановку, в которой он, призванный в армию в войну 1914–1918 гг., работал: «После того как я утвердился в военном ведомстве, я нашел время для того, чтобы снова начать свою научную работу. В моем письменном столе имелось два выдвижных ящика, один был полон бумаг по звукометрии, в области которой я работал вместе с десятком других военнообязанных физиков, а в

другом лежали мои собственные исследования». Его коллеги-физики поступали точно так же. «Мы были совершенно гарантированы от того, — пишет Борн, — чтобы наш майор заметил различие между акустическими формулами по звукометрическим методам и другими нашими иероглифами».

После окончания войны Борн переехал в Геттинген, где основал большую интернациональную школу теоретической физики, к которой принадлежали такие теоретики как Э. Ферми, П. Дирак, Р. Оппенгеймер, Мария Гепперт-Мейер, И. фон Нейман, Э. Теллер, Ю. Вигнер, Л. Полинг, Г. Гамов, В. Гайтлер, В. Вайскопф, Л. Розенфельд и другие ученые, многие из которых были удостоены Нобелевской премии. Ассистентами Борна в это время были В. Паули и В. Гейзенберг. С ним работали и многие советские физики: В. А. Фок, И. Е. Тамм, Я. И. Френкель и др.

Именно Борн первым употребил выражение «квантовая механика», продумал и обосновал ее вероятностное толкование. И хотя направляющая идея матричной механики принадлежит Гейзенбергу (это Борн всегда подчеркивал), математическое оформление этой гениальной идеи, ее развитие в теорию — прежде всего, если не исключительно — заслуга Борна. Он создал «новый стиль мышления о явлениях природы» — в этом и состоит его самая большая научная заслуга.

Хотя некоторые ученики Борна уже успели получить Нобелевскую премию за работы по квантовой теории, вклад его самого недооценивался вплоть до 1954 г., когда он, наконец, был награжден Нобелевской премией «за фундаментальные исследования по квантовой механике, особенно за его статистическую интерпретацию волновой функции». В Нобелевской лекции Борн описал истоки квантовой механики и ее статистической интерпретации и задал вопрос: «Можем ли мы нечто, с чем нельзя ассоциировать привычным образом понятия "положение" и "движение", называть предметом или частицей?» — и заключил: «Ответ на этот вопрос принадлежит уже не физике, а философии».

В автобиографии Макс Борн писал: «Мне никогда не нравилось быть узким специалистом. Я не слишком подошел бы к современной манере проводить научные исследования большими группами специалистов. Философское основание науки — вот что всегда интересовало меня больше, чем конкретные результаты». И еще: «Мой метод работы состоит в том, что я стремлюсь высказать то, чего, в сущности, и высказать еще не могу, ибо пока не понимаю этого сам».

Отметим также, что его книги по динамике кристаллической решетки и оптике до сих пор дают самые ясные и четкие изложения этих дисциплин.

9. Поль Дирак

Четвертым, после де Бройля, Гейзенберга и Шредингера, автором идей квантовой механики называют обычно Поля Адриана Мориса Дирака (1902–1984, Нобелевская премия 1933 г.). Это был углубленный в себя застенчивый и молчаливый человек (шутили, что законченную фразу он произносит не чаще, чем раз в високосный год), непревзойденный виртуоз математических расчетов и убежденный, даже воинственный атеист (Гейзенберг и Шредингер — оба искренне верующие, протестант и католик, так что уже этот пример показывает, что к успехам в науке религия отношения не имеет).

Изучая работы по квантовой механике (точнее, переписывая их по-своему), Дирак понял ее главный на то время недостаток — она никак не состыковывалась с теорией относительности, т. е. описывала лишь частицы с малой скоростью (по сравнению со скоростью света). Шредингер

попытался снять ограничение на скорость в квантовой механике, обобщая соотношение Е = 2, но не преуспел в этом: из него никак не получался спин электрона. Кроме того, это уравнение показывало такую странность: центр масс электрона может двигаться с любой скоростью, а вот у его заряда мгновенная скорость всегда одинакова и равна скорости света — явление это названо «дрожанием» Шредингера, оно проявляется во всех релятивистских уравнениях и до сих пор вызывает своей непонятностью головную боль у теоретиков…

Дирак принял во внимание такую особенность электрона: у него есть спин, который может иметь лишь два направления (условно, вверх и вниз). Спин — это новая степень свободы частицы, не сводимая к прежним. Значит, уравнение для него должно разделяться на два — с разным направлением спина. Но спин этот может переворачиваться, поэтому уравнения должны быть как-то взаимосвязаны: если подставить одно в другое, то вероятности перескоков спина будут полностью учтены, и тогда они должны перейти в соотношения Эйнштейна — Шредингера.

А теперь посмотрим, каково должно быть уравнение, чтобы при такой подстановке (фактически, при возведении в квадрат), оно возвращалось к данному соотношению.

Это соотношение представляет собой сумму квадратов энергии и импульса, но как извлечь квадратный корень из суммы квадратов E2 + P2)? И Дирак придумывает: корень из такой суммы равен сумме энергии и импульса, умноженных на какие-то величины: (Е + Р). При возведении в квадрат и последующем анализе выясняется, что эти величины и являются матрицами 4-го порядка, т. е. табличками с четырьмя строками и столбцами (они называются, конечно, матрицами Дирака). Но поэтому уравнение разлагается не на два уравнения, как ожидал Дирак, а на четыре (1928). Спин оно, правда, описывает и, кроме того, позволяет предсказать магнитные свойства электрона (магнитный момент), но, все же, у него четыре компоненты, хотя нужными кажутся только две!

Нормальный исследователь после этого должен был бы забросить такую задачу и поискать что-нибудь попроще. Но Дирак — гений, и он не сдается: первые два уравнения описывают электрон с двумя возможными направлениями спина, но два других соответствуют отрицательной энергии. Что же это может значить?

Дирак продолжает думать. Вначале казалось, что эта вторая частица соответствует протону, ядру атома водорода, но ведь масса у протона в 1836 раз больше массы электрона — идея не проходит. И в 1931 г. он придумал: отрицательный знак энергии можно перенести на перемену знака заряда, т. е. вместо электрона с отрицательной энергией должен существовать антиэлектрон с положительной энергией, но с зарядом противоположного знака!

При этом Дирак показывает, что пара — частица и античастица — может аннигилировать (от латинского «нигиль» — ничто), т. е. исчезнуть, превратившись, например, в два или три фотона. Такая аннигиляция ничему не противоречит: закон сохранения заряда выполняется, поскольку у пары полный заряд равен нулю, энергия и импульс передаются другим частицам, например, фотонам. И наоборот — фотон может превратиться в такую пару. Позднее стало ясно, что такая же аннигиляция может иметь место в любой паре частица — античастица, более того, если существуют звезды из антивещества, то они могут аннигилировать с обычными звездами — это единственный процесс, при котором превращение массы в энергию может быть полным. (Фантасты часто описывают полеты ракет, двигатели которых работают на процессе аннигиляции, но, увы, пока не видно никаких технических возможностей получения и хранения больших количеств антивещества!)

Поделиться:
Популярные книги

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Хёвдинг Нормандии. Эмма, королева двух королей

Улофсон Руне Пер
Проза:
историческая проза
5.00
рейтинг книги
Хёвдинг Нормандии. Эмма, королева двух королей

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Отец моего жениха

Салах Алайна
Любовные романы:
современные любовные романы
7.79
рейтинг книги
Отец моего жениха

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6