Наблюдения и озарения или Как физики выявляют законы природы
Шрифт:
Сейчас мессбауэровская спектроскопия находит применение не только в ядерной физике, но и в таких разнообразных областях как археология, химический катализ, строение молекул, валентность, физика твердого тела, атомная физика и биологические полимеры [25] .
Глава 2
Ядерные реакции
25
В фольклоре физиков существует и «второй эффект Мессбауэра»: получив
Для того чтобы какая-нибудь частица могла провзаимодействовать с ядром, она должна пройти сквозь электронную оболочку атома. Поэтому такая частица либо должна обладать достаточно большой энергией, либо быть нейтральной. Само взаимодействие может заканчиваться тем, что налетающая частица или какая-то ее компонента остается в ядре, т. е. масса ядра возрастает, после чего возникает новое ядро, стабильное, радиоактивное или быстро распадающееся.
Особый интерес при таких реакциях вызывает возможность выделения энергии обусловленная разницей энергии связи разных ядер.
Мы уже говорили, что образование связанных состояний (планетная система вокруг Солнца, атомы в молекуле, электроны в атоме) можно объяснить как наличием сил притяжения, гравитационных или электрических, так и тем, что, согласно формуле Эйнштейна Е = mс2 (или, точнее, Е = ± mс2, где греческой заглавной буквой — «дельта» обозначается изменение), полная масса связанной системы меньше суммы масс составляющих частей в свободном состоянии. Получаемая энергия связи позволяет вычислить дефект массы при соединении частей системы (надо разделить его на квадрат скорости света). Однако в тех случаях этот дефект масс был столь мал, что его практически трудно или невозможно измерить.
Однако в ядерной физике положение иное: дефект массы нуклонов в ядре может достигать 0,4 % полной массы — это приводит к грандиозной доле выделяемой энергии в некоторых ядерных реакциях. Максимальный дефект массы наблюдается в ядрах с массовым числом в интервале примерно от 30 до 100, и поэтому существуют две принципиально различные возможности выделения внутриядерной энергии: реакции деления тяжелых ядер с большим массовым числом или соединение ядер с малыми массовыми числами (реакции синтеза).
Физически очевидно, что реакции деления осуществить проще: можно думать, что достаточно сообщить ядру избыточную энергию, дав ему поглотить нейтральные частицы, например фотоны или нейтроны, и тем самым «раскачав» его в надежде на последующее самопроизвольное деление. А вот для реакций синтеза нужно, чтобы два ядра слились, преодолев кулоновский барьер. Для этого им нужно придать, по крайней мере, достаточную кинетическую энергию, либо нужно каким-то образом понизить этот барьер.
Первая ядерная реакция была осуществлена Резерфордом в 1919 г., когда облучение атомов азота альфа-частицами радия привело к образованию одного из изотопов кислорода с излучением протона. Следующая реакция (о ней писали выше) была получена Кокрофтом и Уолтоном.
Как мы уже говорили, В. Боте и супруги Жолио-Кюри обнаружили при облучении легких ядер альфа-частицами возникновение какого-то излучения, которое, согласно Чедвику, является потоком нейтронов.
Фредерик Жолио, электроинженер по первоначальному образованию, сконструировал чувствительный детектор с камерой Вильсона для исследования этой проникающей радиации. Вместе с женой, Ирэн Кюри, они сумели приготовить образец с необычайно высокой концентрацией полония и на этой аппаратуре обнаружили то излучение, которое так успешно смог исследовать Чедвик, — фактически они потеряли открытие нейтрона и сопутствовавшее ряду актов излучение позитронов. Но в самом начале 1934 г. супруги Жолио-Кюри начали новый эксперимент. Закрыв отверстие камеры
Таким образом, Жолио-Кюри обнаружили, что в некоторых образцах алюминия и бора возникли новые химические элементы. Более того, эти новые элементы были радиоактивными: алюминий, поглощая два протона и два нейтрона альфа-частиц, превращался в радиоактивный фосфор, а бор — в радиоактивный изотоп азота. Поскольку такие неустойчивые радиоактивные изотопы не встречались в природе, ясно было, что они созданы искусственным путем. (Впоследствии супруги Жолио-Кюри синтезировали большое число новых радиоактивных элементов.)
В 1935 г. Фредерику и Ирен Жолио-Кюри была присуждена Нобелевская премия по химии «за выполненный синтез новых радиоактивных элементов». К. В. Пальмайер, представляя их от имени Шведской королевской академии наук, сказал: «Благодаря вашим открытиям впервые стало возможным искусственное превращение одного элемента в другой, до тех пор неизвестный».
В своей Нобелевской лекции Ф. Жолио отметил: «У нас есть основания полагать, что ученым… удастся осуществить превращения взрывного характера, настоящие химические цепные реакции», которые освободят огромное количество полезной энергии. «Однако если разложение распространится на все элементы нашей планеты. — предупреждал ученый, — то последствия развязывания такого катаклизма могут только вызвать тревогу».
Эти исследования были продолжены Энрико Ферми [26] и его группой в Риме, которая принялась последовательно бомбардировать нейтронами каждый элемент периодической таблицы с целью получить новые радиоактивные изотопы при присоединении нейтронов к ядрам. Первого успеха удалось достичь при бомбардировке фтора, а далее, методично бомбардируя все более тяжелые элементы, Ферми и его группа получили сотни новых радиоактивных изотопов. И самое главное: они показали, что вероятность ядерных процессов возрастает с уменьшением скорости нейтронов — их нужно уметь замедлять, чтобы они не проскакивали мимо ядер, а входили в них (именно за этот метод замедления нейтронов Ферми и была присуждена Нобелевская премия).
26
Энрико Ферми (1901–1954) начал с теоретических исследований: это основополагающие работы по квантовой статистике, теории бета-распада, модели атома, квантовой электродинамике С 1934 г. уделял больше внимания эксперименту, об этих работах мы еще не раз будем говорить. Во время церемонии вручения Нобелевской премии в декабре 1938 г в Стокгольме Ферми, вместо приветствия фашистским салютом, пожал руку королю Швеции, за что подвергся нападкам в итальянской печати и эмигрировал в США О жизни Э. Ферми см. Лаура Ферми: «Атомы у нас дома» и Эмилио Сегре: «Энрико Ферми, физик». Сегре назвал его «последним человеком, владеющим всей физикой своего времени»
Сам Ферми так рассказывал С. Чандрасекару как возникла ключевая идея замедлять нейтроны: «Придя однажды в лабораторию, я подумал, что стоит попробовать посмотреть, что получится, если на пути нейтронного пучка поместить свинец. Свинцовая пластинка была тщательно изготовлена… Но вдруг решил: „Нет, свинец здесь ни к чему, мне нужен парафин". Вот так примерно все и произошло — без глубоких раздумий и тщательного анализа. Я сразу же взял какой-то ненужный кусок парафина и поместил его на место свинцовой пластики». Эта история представляет одну из лучших иллюстраций роли подсознания в научном поиске, в совершении открытия.