Чтение онлайн

на главную - закладки

Жанры

Наблюдения и озарения или Как физики выявляют законы природы

Перельман Марк Ефимович

Шрифт:

А существуют ли другие возможности для развития термоядерной энергетики?

В 1947 г., как мы говорили, Пауэлл обнаружил в космических лучах след мезона, который затем превращался в чуть более легкую частицу, но не протон и не электрон. Пауэлл решил, что первоначальная частица — это пи-мезон, предсказанный Юкавой переносчик ядерных взаимодействий. Он, по-видимому, превращался в несколько более легкий мю-мезон, тот самый, который еще в 1937 г. нашел К. Андерсон. Поэтому возник вопрос: как они соотносятся друг с другом? (Доказательство справедливости его предположения о распаде пи-мезона на мю-мезон и нейтрино было установлено позже.) Поскольку вопрос оставался дискуссионным, С. Франк в том же 1947 г. опубликовал маленькую заметку о том, что, возможно, самая первая

частица, найденная Пауэллом, — это все тот же мю-мезон, но севший на место электрона в атоме.

Сахаров заинтересовался этой заметкой и рассмотрел такую возможность: масса мю-мезона в 207 раз больше массы электрона, значит, радиус мю-мезоатома будет в 207 раз меньше радиуса водорода с обычным электроном на орбите. Поэтому мю-мезоатом как нейтральное образование может так близко подойти к ядру другого атома, что начнется реакция синтеза — и все это при нормальной температуре. Более того, сам мю-мезон в такой реакции не участвует, поэтому он может, сблизив два ядра, полететь дальше и снова привести к такой же реакции. Таким образом, эта частица может играть роль катализатора реакции (от греческого «катализис» — разрешение), но недолговечного — время жизни мюона длится около двух миллионных секунды. Этот процесс Сахаров назвал мю-мезонным (или мюонным) катализом, и с тех пор он интенсивно изучается: планируется, в принципе, строить специальные ускорители, так называемые мезонные фабрики, энергия для которых будет вырабатываться в ходе самой каталитической реакции.

Проблема управляемых термоядерных реакции столь важна, а решение ее столь многообещающе, что время от времени появляются сообщения об их наблюдении в самых экзотических условиях. Так, в начале 1990-х гг. два исследователя сообщили, что они наблюдают такую реакцию при накачке кристалла чистого металла палладия дейтерием: между узлами кристаллической решетки палладия как раз помещаются атомы дейтерия, и, по уверению авторов, они так сближаются, что начинается синтез гелия. К сожалению, это наблюдение не подтвердилось — возможно, авторы были вполне искренни, но у них что-то случилось с аппаратурой.

В конце 1990-х гг. появились новые сообщения. При прохождении мощной ультразвуковой волны через воду в ней, как известно, возникают пузырьки — это явление кавитации. Затем эти пузырьки схлопываются, иногда с грохотом, что говорит о сильном давлении, возникающем в них, — вот это давление, по мнению авторов статей, и приводит к термояду, следы которого они как будто наблюдали. Но и эта сенсация, увы, не подтвердилась.

Еще одна возможность, тоже впервые рассмотренная Сахаровым, — это нагрев малых количеств ядерных реагентов одновременными импульсами мощных лазеров. Лазерный термояд также продолжает исследоваться.

Глава 4

«Элементарные» частицы

Сущности не следует умножать без необходимости.

У. Оккам

Поиск исходных «кирпичиков», из которых построен весь мир, — одна из характерных черт любой цивилизации (и, согласно И. Канту, одна из антиномий чистого разума). Не вдаваясь в седую древность, можно сказать, что к концу XIX в. цель, казалось, была достигнута: мир состоит из нескольких десятков видов неизменных атомов и электромагнитного излучения (такое количество исходных атомов выглядит как-то неубедительно, но что поделаешь?). Затем появились: электрон, фотоны, превращения атомов, а позже — структуры этих самых атомов. С открытием нейтрона можно было, как снова казалось, успокоиться: есть протоны, нейтроны, электроны (и их античастицы) и кванты — этих элементарных частиц достаточно для построения всего вещества. Потом добавились пи-мезоны, обеспечивающие связи в ядрах и нейтрино — уже не так мало видов частиц, но среди них как будто ни одной излишней, ненужной…

Ах да, мы забыли о мюоне — для чего он нужен, он же явно излишен в этой утилитарной схеме?

Но с конца 1940-х гг. новые частицы посыпались как из рога изобилия, к 1980-м их можно было считать чуть ли не сотнями. С нашей антропоцентрической (т. е.

ставящей во главу угла существование человека) точки зрения, это явный перебор природы. И тут стали возникать разные идеи: рассматривать одни частицы как основные, а другие как составленные из них или их возбужденные состояния, придумать схемы их классификации и взаимозависимости — т. е. как-то упорядочить все это неожиданное обилие объектов и, если не целиком, сразу, то хоть по частям, свести их к определенным типам взаимодействия или к полям с соответствующими квантами взаимодействия.

Частицы, обнаруженные в таком количестве, стало даже как-то неудобно называть «элементарными» или «фундаментальными», поэтому эти названия постепенно вышли из употребления (иногда их называют субъядерными частицами). Остались только подразделения частиц на лептоны, мезоны, барионы, кванты калибровочных полей (в том числе фотон) и кварки [37] , или по-иному: на частицы, участвующие в сильных, электромагнитных, слабых и гравитационных взаимодействиях (некоторые из этих типов можно еще подразделить).

37

Частицы, участвующие в сильных взаимодействиях, барионы и мезоны, называются общим именем — адроны (от греческого «хадрос» — крепкий, сильный).

Но четыре типа взаимодействия — это тоже слишком много: нельзя ли их как-нибудь объединить? Сумели же Эрстед и Ампер начать объединять электричество и магнетизм, а Максвелл успешно объединил электромагнетизм и оптику!

Но нужно сохранять последовательность изложения. Поэтому мы рассмотрим в этом разделе, как открывали частицы, а позже — типы их взаимодействий и возможности их объединения [38] .

1. Бета-распад: появление нейтрино

38

Стоит отметить, что для этих областей исследования характерна ситуация, когда одни и те же теории и модели выдвигают одновременно несколько человек. Можно даже думать, что «плотность интеллекта» в них, число талантов, сосредоточенных одновременно над одной и той же проблемой, было (или до сих пор остается?) самым большим в истории человечества.

Еще в 1914 г. Дж. Чедвик, измерявший энергии электронов, вылетающих во время превращения радиоактивного изотопа висмута в полоний, пришел к очень странному результату: энергии этих электронов принимали все значения — от очень малого до некоторого самого высшего, причем с почти одинаковой вероятностью. Вначале, конечно, подумалось, что после вылета электрона и превращения ядра излишняя энергия излучится как гамма-квант, но их не обнаружили. Но тогда эта произвольная энергия должна была оставаться в самом ядре, а ведь в нем существуют только определенные уровни, т. е. могут оставаться только определенные порции энергии?

Положение казалось столь безвыходным, что Н. Бор с соавторами предположили, что в элементарных актах взаимодействия энергия сохраняется только «в среднем». Но тогда этот самый бета-электрон должен был бы иметь то меньшую энергию, то большую, а все измерения, начиная с опытов Чедвика, показывали, что есть верхний порог, максимальная энергия электронов распада.

В 1930 г. В. Паули предлагает, в противовес своему учителю Бору, другое объяснение: при бета-распаде помимо электрона испускается еще одна частица, она нейтральная, имеет спин 1/2 и, вероятно, очень малую массу, поэтому ее не замечают. (Это весьма еретическое предположение Паули не опубликовал, а послал письмом в адрес семинара по физике, на который не смог приехать — готовился к балу в своем университете. Сам он настолько скептически относился к собственной гипотезе, что даже заключил пари, что нейтрино никогда не будет обнаружено — признать свой проигрыш ему пришлось только через 25 лет.)

Поделиться:
Популярные книги

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

В осаде

Кетлинская Вера Казимировна
Проза:
военная проза
советская классическая проза
5.00
рейтинг книги
В осаде

Судьба

Проскурин Пётр Лукич
1. Любовь земная
Проза:
современная проза
8.40
рейтинг книги
Судьба

Гридень. Начало

Гуров Валерий Александрович
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гридень. Начало

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Адвокат вольного города 2

Парсиев Дмитрий
2. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 2

Законы Рода. Том 10

Андрей Мельник
10. Граф Берестьев
Фантастика:
юмористическая фантастика
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 10

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Господин моих ночей (Дилогия)

Ардова Алиса
Маги Лагора
Любовные романы:
любовно-фантастические романы
6.14
рейтинг книги
Господин моих ночей (Дилогия)

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп