Начало бесконечности. Объяснения, которые меняют мир
Шрифт:
Даже в пределах одной и той же истории частицы, как правило, не сохраняют свою индивидуальность во времени. Например, при столкновении двух атомов варианты развития событий расщепляются на что-то вроде
и что-то вроде
Таким образом, для каждой отдельной частицы это событие скорее представляет собой столкновение с полупрозрачным зеркалом. Каждый атом играет роль
где в конце столкновения некоторые экземпляры каждого атома становятся неотличимыми от того, что изначально было другим атомом.
По той же причине нет такого понятия, как скорость одного экземпляра частицы в заданном местоположении. Скорость определяется как преодоленное расстояние, деленное на потраченное время, но это не имеет смысла, когда нет такого понятия, как определенный экземпляр частицы на протяжении отрезка времени. Вместо этого набор неотличимых экземпляров частицы в общем случае имеет несколько скоростей, и это означает, что мгновением позже они, вообще говоря, будут делать нечто разное. (Это еще один пример «многообразия в пределах неотличимости».)
Не только неотличимый набор с одним и тем же положением может иметь разные скорости, но и группа неотличимых объектов с одной и той же скоростью может иметь различные положения. Более того, из законов квантовой физики следует, что для любого набора неотличимых экземпляров физического объекта некоторые из их свойств должны быть различными. Это так называемый «принцип неопределенности Гейзенберга», носящий имя физика Вернера Гейзенберга, создавшего первую версию квантовой теории.
Так, например, у отдельного электрона всегда есть набор различных положений и набор различных скоростей и направлений движения. Как следствие, его обычное поведение состоит в постепенном распределении по пространству. Электрон подчиняется квантово-механическому закону движения, напоминающему закон, по которому растекается чернильная клякса, – если он изначально располагался в очень маленькой области, то распространяется быстро, и чем больше он разрастается, тем меньше становится скорость. Информация о запутанности, которую в себе несет электрон, гарантирует, что никакие два его экземпляра не будут задействованы в одной и той же истории. (Или, точнее говоря, во временах и местах, где есть варианты истории, он существует в экземплярах, которые никогда не смогут столкнуться.) Если диапазон скоростей частицы центрирован не на нуле, а на каком-то другом значении, то вся «чернильная клякса» движется, и ее центр приблизительно подчиняется законам движения классической физики. Так, в общем, устроено в квантовой физике движение.
Этим объясняется также и то, как в одной истории частицы могут быть неотличимыми в устройствах наподобие атомного лазера. Две такие «частицы-кляксы», каждая из которых является мультиверсным объектом, могут идеально совпасть в пространстве, а их информация о запутанности может быть такой, что никакие два их экземпляра никогда не находятся в одной и той же точке одной и той же истории.
Теперь поместим протон в середину этого постепенно расползающегося облака экземпляров одного электрона. У протона положительный заряд, притягивающий отрицательно заряженный электрон. В результате облако перестанет расползаться, когда его размер достигнет такой величины, при которой тенденция к расширению из-за многообразия, связанного с принципом неопределенности, в точности компенсируется притяжением к протону. То, что получается в результате, называется атомом водорода.
Исторически это объяснение природы атомов было одним из первых триумфов квантовой теории, ведь согласно классической физике атомы вообще не могли существовать. Атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами. Но положительные и отрицательные заряды притягиваются и, если их ничто не сдерживает, ускоряются навстречу друг другу, испуская по пути энергию в виде электромагнитного излучения.
Устоявшийся термин «принцип неопределенности» вводит в заблуждение. Подчеркну, что он не имеет никакого отношения к неопределенности или каким-либо иным неприятным психологическим ощущениям, которые могли испытывать первопроходцы квантовой физики. Когда у электрона есть более одной скорости или более одного положения, в этом не больше чьей-то неуверенности в его скорости, чем «неуверенности» относительно того, какой из долларов на банковском счету принадлежит налоговым органам. Многообразие свойств в обоих случаях – физический факт, который не зависит от чьих-либо знаний или ощущений.
И, кстати говоря, принцип неопределенности вовсе не «принцип», ведь принцип предполагает независимый постулат, который с точки зрения логики можно было бы отбросить или заменить и получить другую теорию. На самом же деле выбросить его из квантовой теории не труднее, чем в астрономии не обращать внимания на затмения. Нет никакого «принципа затмений»: их существование можно вывести из гораздо более общих теорий, как, например, геометрия и динамика Солнечной системы. Аналогично и принцип неопределенности выводится из принципов квантовой теории.
Благодаря сильной, постоянно протекающей внутренней интерференции типичный электрон представляет собой принципиально мультиверсный объект, а не набор объектов из параллельных вселенных или с параллельными историями. Другими словами, у него множество положений и скоростей, но при этом он не делится на автономные субсущности, у каждой из которых одна скорость и одно положение. Даже разные электроны не обладают совершенно обособленной индивидуальностью. Таким образом, в реальности есть электронное поле, охватывающее все пространство, и возмущения распространяются по этому полю в виде волн со скоростью света или ниже. Отсюда появилось часто цитируемое заблуждение первопроходцев квантовой теории, будто электроны (как и другие частицы) – это «частицы и волны одновременно». Для каждой отдельной частицы, которую мы наблюдаем в конкретной вселенной, в мультивселенной есть поле (или «волны»).
Квантовая теория выражается математическим языком, но я сейчас на обычном языке объяснил основные особенности описываемой ею действительности. Таким образом, на данном этапе та вымышленная вселенная, которую я рисую, является более или менее реальной. Но осталось привести в порядок еще одно. Моя «последовательность рассуждений» опиралась на представление о вселенных и экземплярах объектов и продолжалась корректировкой этих идей с целью описать мультивселенную. Но настоящая мультивселенная ни на что «не опирается» и не является поправкой для чего бы то ни было. Вселенные, истории, частицы и их экземпляры не упоминаются в квантовой теории, как и планеты, люди, их жизнь и привязанности. Все это – приближенные описания, эмерджентные явления для мультивселенной.