Наша математическая вселенная. В поисках фундаментальной природы реальности
Шрифт:
– Что стало причиной нашего Большого взрыва?
– Объяснения этому нет. Уравнения просто учитывают, что это случилось.
– Произошел ли наш Большой взрыв в одной точке?
– Нет.
– Где именно в пространстве произошел наш Большой взрыв?
– Он случился везде, сразу в бесконечном множестве точек.
– Как бесконечное пространство может быть порождено за конечное время?
– Объяснения этому нет. Уравнения просто учитывают, что пространство было бесконечным уже в момент его появления.
Можно ли сказать, что эти ответы раскрывают суть дела и элегантно снимают все вопросы о Большом взрыве? Если нет, то вы в хорошей компании! На самом деле есть еще много вещей, которые фридмановская модель Большого взрыва не может объяснить.
Проблема
Проанализируем тщательнее третий вопрос из списка. На рис. 5.2 проиллюстрирован тот факт, что температура излучения космического микроволнового фона почти одинакова (с точностью до пятой значащей цифры) во всех направлениях. Если бы Большой взрыв случился в одних областях пространства существенно раньше, чем в других, у этих областей было бы разное время для расширения и остывания и температура на наших картах космического микроволнового фона варьировалась бы от места к месту не на 0,002 %, а почти на 100 %.
Но не мог ли некий физический процесс привести к выравниванию температуры гораздо позднее Большого взрыва? В конце концов, если лить холодное молоко в горячий кофе, не удивительно, что когда вы начнете пить, они станут однородно теплыми. Проблема в том, что процесс смешивания требует времени: необходимо подождать, чтобы молекулы молока и кофе перемешались. Однако у отдаленных частей Вселенной, доступных нашим наблюдениям, не было времени для такого перемешивания (еще в 60-х годах на это обратили внимание Чарлз Мизнер и его коллеги). У областей а и б (рис. 5.2), которые мы видим в противоположных направлениях на небе, не было времени для взаимодействия: даже информация, передающаяся со скоростью света, не успела бы дойти из а в б, поскольку свет от а прошел полпути – до точки, где находимся мы. Это значит, что фридмановская модель Большого взрыва не дает объяснения одинаковой температуры в точках а и б. Получается, что у этих областей было равное время для остывания после Большого взрыва, а отсюда следует, что они независимо испытали Большой взрыв почти в одно и то же время без какой-либо общей причины.
Рис. 5.2. У молекул горячего кофе и холодного молока достаточно времени для взаимодействия и выравнивания температуры. У плазмы в областях а и б не было времени для взаимодействия: даже информация, передаваемая со скоростью света, не успела бы дойти от а до б, поскольку свет от а достиг пока лишь тех, кто пьет кофе на полпути к б. Поэтому с точки зрения фридмановской модели Большого взрыва тот факт, что плазма в областях а и б тем не менее обладает одинаковой температурой, является загадкой.
Чтобы лучше понять, какое недоумение это вызвало у Алана Гута, представьте вот что. Проверив электронную почту, вы обнаружили приглашение на ланч от приятеля, а затем увидели, что все остальные ваши приятели прислали вам по письму с приглашением на ланч и что все до единого письма отправлены одновременно. Вы, вероятно, решили бы, что имеет место сговор и что появление всех этих писем вызвано общей причиной. Возможно, друзья решили устроить вам вечеринку-сюрприз. Для завершения аналогии с загадкой Алана о Большом взрыве, где области а, б, … соответствуют вашим приятелям, добавим, что вам точно известно: ваши друзья никогда не встречались, не связывались друг с другом и не имели доступа к какой-либо общей информации до отправки вам приглашений. Тогда пришлось бы признать это невероятным совпадением. На самом деле, слишком невероятным, так что вы, вероятно, решили бы, что сделали некорректное допущение и ваши друзья все же смогли снестись. И это точно тот вывод, который сделал Алан: то, что бесконечное множество независимых областей пространства испытали Большой взрыв одновременно, не может быть беспричинным совпадением. Должен иметься некий физический механизм, вызывающий и взрыв, и синхронизацию. Один необъясненный Большой взрыв – это уже плохо; бесконечное число необъясненных Больших взрывов, вдобавок прекрасно синхронизированных, – уже ни в какие ворота не лезет.
Это проблема горизонта: она затрагивает то, что мы видим на своем космологическом горизонте – в самых отдаленных областях, доступных для наблюдения. Словно этого мало, Боб Дикке рассказал Алану о втором затруднении фридмановской теории Большого взрыва, которую он назвал проблемой плоской геометрии.
Проблема плоской геометрии
Измерения показывают, что наше пространство
17
Мы даже не измерили силу гравитации с точностью больше 4 знаков после запятой, так что последние 20 цифр я привожу лишь для наглядности.
Рис. 5.3. Еще одна необъясненная загадка фридмановской модели Большого взрыва состоит в том, что Вселенная так долго существует без заметного искривления пространства, ведущего к Большому хлопку или Большому замерзанию. Эти кривые соответствуют незначительно различающимся значениям плотности в момент, когда возраст Вселенной составлял одну миллиардную секунды: изменение последней из 24 цифр приводит к переходу в режим Большого хлопка или Большого замерзания прежде, чем Вселенная достигнет 4 % своего нынешнего возраста. (Благодарю Неда Райта за идею рисунка.)
Так почему наша Вселенная плоская? Если заменить 24 цифры на рис. 5.3 случайными значениями и решить уравнение Фридмана, то вероятность получить Вселенную, которая останется плоской спустя 14 млрд лет, будет меньше, чем для дротика, брошенного с Марса, попасть точно в центр мишени на Земле. Тем не менее фридмановская модель Большого взрыва не предполагает никакого объяснения этому совпадению.
Конечно, рассудил Алан Гут, должен существовать некий механизм, который вынуждает Вселенную иметь точно такую плотность, какая требуется, чтобы обеспечить исключительно плоскую геометрию в самом начале ее истории.
Как действует инфляция
Сила удвоения
Алан догадался, что с помощью одной странно звучащей посылки можно разом решить и проблему горизонта, и проблему плоской геометрии, и объяснить многое другое. Посылка такова: в некоторый момент существовала однородная капля некоей плотной субстанции, которую было очень трудно рассеять. Это значит, что если бы 1 г такой субстанции вдвое увеличился в объеме, то его плотность (отношение массы к объему) осталась бы почти такой же, и получилось бы уже 2 г материи. Сравним это с обычным веществом, таким как воздух: если он расширяется, занимая больший объем (как при выпускании сжатого воздуха из шины), общее число молекул газа, а значит, и общая масса, остается неизменным, и плотность падает.
Согласно эйнштейновской теории гравитации, крошечная нерассеиваемая капля может испытать поразительное разрастание, которое Алан назвал инфляцией, и фактически вызвать Большой взрыв! Как показано на рис. 5.4, уравнения Эйнштейна имеют решение, в котором каждая часть капли удваивается в размерах за одинаковые отрезки времени (такой тип роста называют экспоненциальным). В этом сценарии наша едва зародившаяся Вселенная росла во многом так же, как вы сами сразу после зачатия (рис. 5.5): любая ваша клетка удваивалась примерно за сутки, за счет чего их общее число в каждый новый день составляло 1, 2, 4, 8, 16 и т. д. Повторяющееся удвоение – могучая сила, и ваша мама попала бы в трудное положение, если бы вы продолжали ежесуточно вдвое прибавлять в весе вплоть до своего рождения: через 9 месяцев (после 274 удвоений) вы весили бы больше, чем вся материя в наблюдаемой части Вселенной! Именно это происходит в описанном Аланом процессе инфляции: начавшись с капли размером много меньше и легче атома, он многократно удваивает ее размеры, пока она не становится массивнее, чем вся наблюдаемая Вселенная.