Наука плоского мира IV: Судный день
Шрифт:
Впрочем, какой бы ни была физическая модель, все согласны, что химические свойства атома по большей части зависят от электронов, ведь именно они находятся снаружи. Атомы объединяются, обмениваясь электронами и формируя таким образом молекулы. Данный процесс относится уже к ведению химии. Раз атом электрически нейтрален, значит, количество электронов должно быть равным количеству протонов. Это число, оно же – атомный номер, и лежит в основе Периодической таблицы Менделеева, а вовсе не атомные веса. Впрочем, атомные веса обычно в два раза больше атомных номеров, поскольку по квантовым причинам количество нейтронов близко к количеству протонов, так что в принципе неважно, какое число использовать – порядок расположения химических элементов практически не изменится. Тем не менее атомный номер лучше всего подходит для объяснения химических зависимостей и периодичности. Оказалось, что период, равный восьми, действительно очень важен, потому что электроны распределены в последовательности концентрических оболочек, подобных матрешке, и для элементов в верхней части таблицы каждая такая оболочка может содержать не более восьми электронов.
Чем дальше, тем оболочек становится больше, и период возрастает.
Но даже упрощенная версия этой истории дает ответы на множество загадок, казавшихся ранее неразрешимыми. Ну, например: если атомный вес – это сумма протонов и нейтронов, как же так выходит, что далеко не всегда в результате получается целое число? Почему атомный вес того же хлора 35,453? Оказалось, что имеет место быть два различных подвида хлора. Один с атомным весом 35, содержащий 17 протонов и 18 нейтронов (и, естественно, 17 электронов, столько же, сколько протонов), а другой – 17 протонов и 20 нейтронов (и опять же 17 электронов, тут все без изменений). То есть он содержит на два нейтрона больше, из-за чего его атомный вес и вырастает до 37. Природный хлор представляет собой смесь этих двух подвидов (так называемых изотопов) примерно в пропорции 3 к 1. С химической точки зрения изотопы почти неразличимы, поскольку количество и расположение электронов у них одинаково, и для химических опытов этого достаточно. Однако их атомная физика отличается.
Отсюда даже не-физику (лирику) становится совершенно понятно, почему волшебники Незримого университета считают, что наша Вселенная сделана второпях и из никуда не годных элементов…
Но откуда взялись эти 113 химических элементов? Существовали ли они всегда или появились уже после рождения нашей Вселенной?
Что касается последней, существует пять способов их возникновения.
• Устройте Большой взрыв и создайте вселенную, получив суп из высокоэнергетических «горячих» элементарных частиц. Подождите, пока они остынут или возьмите уже готовые. По всей видимости, помимо полезной материи, вы получите всякие сомнительные штуковины вроде миленьких черных дыр или магнитных монополей, однако все они скоро выкипят, и в сухом остатке у вас будет привычная материя. Электромагнитные силы в такой горячей вселенной слабы и не могут противостоять ее разрывам, но как только все остынет, элементарные частицы смогут объединяться благодаря электромагнитному притяжению. Правда, единственный химический элемент, который возникнет спонтанно, это водород (1 протон + 1 электрон), зато уж его вы получите в избытке: в нашей Вселенной водород – самый распространенный элемент, и почти весь он возник в результате Большого взрыва. Еще элементарные частицы могут образовать дейтерий (1 электрон + 1 протон + 1 нейтрон) или тритий (1 электрон + 1 протон + 2 нейтрона), но тритий, вообще говоря, радиоактивен, то есть, испустив все свои нейтроны, он распадется до простого водорода. Второй по распространенности элемент – гелий (2 электрона + 2 протона + 2 нейтрона) вполне стабилен.
• Включите гравитацию. Водород и гелий начнут собираться вместе, формируя звезды, те самые «топки», о которых говорили волшебники. Давление в центре звезды огромно. Это введет в игру новые ядерные реакции, и вы получите термоядерный синтез, при этом атомы будут сдавлены с такой силой, что объединятся в новые, более крупные атомы. Таким способом образуются всем знакомые углерод, азот, кислород, а также менее распространенные литий, бериллий и так далее, вплоть до железа. Многие из этих элементов встречаются в живых телах, и самый важный из них – углерод. По причине своей уникальной электронной структуры углерод – единственный элемент, атомы которого могут объединяться друг с другом в более крупные и сложные молекулы, без которых жизнь была бы невозможна [21] . Отсюда следует вывод: большая часть атомов, из которых мы с вами состоим, появилась на свет внутри какой-нибудь звезды. Как пела Джонни Митчелл в Вудстоке: «Мы – звездная пыль» [22] . Ученые обожают цитировать эту строчку, видимо чувствуя себя при этом до сих пор молодыми.
21
Кстати, кремний тоже способен на такие штуки, хотя и с натугой; так что, если вы пожелаете завести экзотические формы жизни, вам следует подумать об организации особых вихрей неподалеку от солнца, или о странных квантовых скоплениях в межзвездной плазме, или о совсем уж фантастических созданиях, существующих на нематериальной основе вроде информации, мыслей или нарративиума. ДНК же – совсем другое дело: на базе иной молекулы, также богатой углеродом, создать жизнь проще простого. Уже сегодня это можно сделать в лабораториях, используя упрощенные модификации ДНК. См. Дж. Коэн и Й. Стюарт «Как создать инопланетянина».
22
Если вы не понимаете, о чем идет речь, поинтересуйтесь у своих родителей.
• Немного подождите, пока звезды сами не начнут взрываться. Небольшие (относительно, конечно) взрывы называют «novae», то есть «новыми звездами»; другие, куда более сильные, – «super novae», иначе говоря, сверхновыми. «Новые» в данном контексте означает, что до взрыва мы эту звезду не видели и не подозревали о ее существовании, а потом – ба-бах! Взрыв происходит, в частности, потому, что заканчивается ядерное топливо. Вторая причина в том, что питающие звезду
• Бывает еще один тип сверхновых, чрезвычайно богатый на тяжелые элементы. Из таких звезд складывается более молодое звездное население I типа [23] . Благодаря нестабильности атомов в результате радиоактивного распада химических элементов появляются новые элементы. К таким «вторичным» элементам относится, например, свинец.
• И, наконец, кое-какие люди научились изготавливать некоторые химические элементы в процессе особых экспериментов в атомных реакторах. Самым известным среди таких элементов является материал для производства ядерного оружия – плутоний, побочный продукт обычных урановых реакций. Другие, более экзотические и существующие совсем короткое время, были синтезированы в экспериментальных коллайдерах. На сегодняшний день у нас имеется 114 химических элементов, между тем как сто тринадцатого по-прежнему не хватает. Возможно, был создан и 116-й элемент, а вот заявка на открытие 118-го, сделанная в 1999 году Национальной лабораторией имени Лоуренса в Беркли, была отозвана. Физики постоянно спорят, кто первым открыл тот или иной элемент и, соответственно, имеет право присвоить ему имя. Поэтому новым тяжелым элементам присваиваются временные (и курьезные) названия, вроде того, которое получил 110-й элемент – унуниллий [24] : на псевдолатыни это означает «сто десять», то бишь «un-un-nihil».
23
Теоретически должно бы существовать и звездное население III типа, самое старое и целиком состоящее из водорода и гелия. Это бы объяснило присутствие некоторых тяжелых элементов в звездном населении II типа. Однако пока никто такого населения еще не встречал. Впрочем, в 2001 году в двух небольших красных пятнах галактического кластера Абель 2218 была замечена группа неких объектов, которые могут оказаться звездным населением III типа. Эти пятна представляют собой многократно увеличенное изображение одной и той же зоны: это увеличение является результатом феномена «гравитационной линзы», без которого звезды в данной зоне вообще были бы не видны. Впрочем, одна из новомодных теорий вообще отрицает необходимость звездного населения III типа. Ее сторонники полагают, что тяжелые элементы возникли до появления звезд, то есть сразу после Большого взрыва. Следовательно, первые сформировавшиеся звезды принадлежали к населению II типа. Хотя это противоречит всему, что сказано выше, – «враки детям», короче говоря.
24
Теперь получил название дармштадтий по месту первого синтеза.
Подобные недолговечные элементы использовать никак не возможно. Какой же смысл в их синтезе? Ну, примерно такой же, как и в существовании гор: они просто есть. А кроме того, это хорошая возможность проверить на практике некоторые смелые гипотезы. Но прежде всего это шаг навстречу чему-то еще более интересному, если, конечно, оно вообще существует. Иными словами, после того, как вы получили полоний с атомным номером 84, все последующие элементы стали радиоактивными: они испускают частицы, распадаясь на более легкие элементы, и чем больше атомный номер, тем быстрее распад. Однако это не может продолжаться вечно. Мы не умеем создавать точные модели тяжелых атомов. Легких, впрочем, тоже не можем, однако с тяжелыми все еще сложнее.
Многочисленные эмпирические модели (умозрительные гипотезы, основанные на интуиции, догадках и жонглировании константами) привели к созданию удивительно точной формулы, позволяющей рассчитать время жизни элемента с определенным количеством протонов и нейтронов. Для некоторых «магических чисел» [25] соответствующие атомы необычайно стабильны. Магическими числами для протонов являются 28, 50, 82, 114 и 164; для нейтронов – 28, 50, 82, 126, 184, 196 и 318. Например, самый стабильный элемент – это свинец со всеми своими 82 протонами и 126 нейтронами.
25
Заметьте, сама терминология Круглого мира доказывает, что создавшие ее физики, вполне возможно, происходили из Плоского мира и прекрасно понимали, что их формулы являются скорее заклинаниями, чем настоящими формулами.
Всего в паре шагов от крайне нестабильного элемента номер 112 находится элемент 114, предварительно названный эка-свинец [26] . Его 114 протонов и 184 нейтрона – это, можно сказать, двойная порция магии, и теоретически он должен быть стабильнее большинства своих соседей. Неизвестно, однако, насколько достоверна эта теория, поскольку приближенные формулы стабильности для больших чисел могут не работать. Каждый грамотный волшебник знает, что заклинания иногда дают сбои. Тем не менее, допустив, что с заклинанием у нас все в порядке, мы можем немного поиграть в Дмитрия Ивановича Менделеева и попробовать предсказать свойства эка-свинца путем экстраполяции свойств элементов Периодической таблицы, входящих в его группу (углерод, кремний, германий, олово и свинец). Как следует из названия, эка-свинец должен быть металлом, похожим на свинец, с температурой плавления 70 °C, температурой кипения при нормальном атмосферном давлении 150 °C и плотностью на 25 % большей, чем у обычного свинца.
26
В 2012 году получил название флеровий.