Необычные размышления о…
Шрифт:
Однако, при этом, проблем не избежать. Дело в том, что когда свет перемещается внутри оптоволоконного витка, то пространственное направление перемещения света (фотона) в таком витке постоянно изменяется. В какие-то моменты времени направление света совпадает с направлением вектора Vгс (или его проекцией на направление света), в другие моменты времени – не совпадает. То есть, при движении света внутри одного витка, может быть реализован принцип: “туда и обратно”. В результате мы потеряем параметр m, а вместе с ним – информацию о скорости перемещения галактики. Единственный случай, когда такой потери не будет, это когда вектор Vгс перпендикулярен плоскости, проходящей через отдельно взятый виток оптоволокна. А,
Читатель может сказать: мы же не знаем заранее – куда в пространстве направлен вектор Vгс. Да, это так. Но мы можем это узнать ранее изложенными способами, без применения оптоволокна, намотанного на катушку. Можем выяснить направление вектора Vгс в пространстве, запомнить его, например, с помощью визирования такого направления на известную звезду.
Или с помощью гироскопов, выставив на гироскопическую платформу катушку с оптоволокном таким образом, чтобы ее ось совпадала с заранее определенным направлением вектора Vгс. А, затем, остается катушку с оптоволокном удерживать в пространстве так, чтобы величина вектора Vгс оставалась неизменной (заранее определенной). Достичь этого можно, путем соответствующего подворачивания гироскопической платформы по углам тангажа, рыскания и крена. При этом катушка с оптоволокном будет участвовать в процессах по коррекции уходов гироскопов, в решении задач ориентации и определении пространственных и плоскостных параметров орбиты космического аппарата.
Неизменность положения вектора Vгс в пространстве, позволяет зафиксировать в пространстве плоскость орбиты и, тем самым, определить такие пространственные параметры, как наклонение орбиты и прямое восхождение восходящего узла, естественно, в сочетании с другими методами.
Если на вектор скорости Vгс спроектировать вектор орбитальной скорости спутника, то, станет возможным, определить параметры, характеризующие эллиптичность орбиты (величину большой оси, эксцентриситет). Чтобы избежать все эти сложности, необходимо на каждом витке катушки, в качестве полезной информации оставлять время прохождения света только в одном направлении. И игнорировать перемещение света в обратном направлении. В дальнейшем мы изложим один из таких способов.
10.1. Определение направления перемещения Туманной Андромеды
Если мы сумеем измерить и построить в пространстве вектор скорости перемещения нашей галактики, Солнца и Земли, то мы узнаем, в каком направлении и как движется наша галактика Млечный путь, например, по отношению к галактике Андромеда. Если окажется, что измеренный вектор скорости направлен в сторону Андромеды и его величина превышает относительную скорость сближения таких галактик, то, значит, Млечный путь гонится за Андромедой и собственная скорость Андромеды меньше скорости Млечного пути на величину скорости относительного сближения галактик.
Если окажется, что измеренный вектор скорости направлен в сторону, противоположную галактике Андромеда, то это означает, что Андромеда гонится за Млечным путем с большей скоростью. Зная величину и направление скорости перемещения галактики Млечный путь, а также скорость относительного сближения галактик, можно рассчитать столкнутся ли наши галактики через миллиарды лет. Вдруг, наша галактика летит куда-то плашмя, в даль туманную, и все-таки, уйдет от столкновения с Андромедой за миллиарды лет.
Нам все это безразлично, ибо в ту пору прекрасную жить не придется ни мне, ни тебе. А, любителям сочинять страшилки, такое знание пригодится.
10.2. Доказательство абсурдности в преобразованиях Лоренца
На рис. 9.1. мы видим, что вектор скорости годового перемещения Земли проецируется на вектор Vгс в виде
Амплитуда такой синусоиды может принимать значения, например, 30 км/сек. Такое максимальное значение амплитуды будет в том случае, если вектор Vгс лежит в плоскости годового перемещения Земли. При этом, если вектор скорости годового перемещения Земли совпадает по направлению с вектором Vгс, то такие вектора складываются и скорость Земли в мировом пространстве, относительно неподвижной сетки – возрастает. Если не совпадает, то – уменьшается.
Не будем забывать, что во всех наших рассуждениях, мы рассматриваем движение относительно неподвижной сетки. В случае, когда вектор Vгс не лежит в плоскости годового перемещения Земли, амплитуда синусоиды примет более низкое значение. Какое? Покажут измерения.
Синусный вид проекции вектора скорости годового перемещения Земли, на вектор Vгс, означает, что Земля, в зависимости от календарного срока на годовой временной шкале, перемещается в пространстве с различной скоростью. На рис. 9.1. точки максимального и минимального значений синусной амплитуды мы произвольно связали с некоторыми календарными датами. Например, пусть, максимальное значение такой синусоиды мы произвольно свяжем с 28 июня, а, минимальное значение – с 28 декабря. Реальная привязка к календарной шкале времени состоится при реальных измерениях векторов скорости.
Пусть, для определенности, минимальное значение такой синусоиды составляет – 15 км/сек, то есть, 28 июня Земля в пространстве летит со скоростью, на 15 км/сек меньшей, скорости Vгс. Пусть, максимальное значение такой синусоиды также равно – 15 км/сек, то есть 28 декабря скорость Земли превышает Vгс на 15 км/сек. Тогда, скорости перемещения Земли, измеренные 28 июня и 28 декабря будут отличаться на 30 км/сек. Это достаточно большая величина, чтобы проверить преобразования Лоренца.
Соберем в какое-нибудь место на поверхности Земли все виды часов, в том числе, и, цезиевые. Воспользовавшись математическими выражениями Лоренца, определим, как изменятся показания часов, при следующих данных: скорость галактики равна – 1000 км/сек; различия в скорости перемещения Земли, составляет – 30 км/сек. Если окажется, что реальные измерения времени совпадут с расчетными результатами, согласно преобразованиям Лоренца, то дружно споем оду восхищения преобразованиям Лоренца. И, наоборот, если показания часов (скорость хода часов) 28 июня, полностью совпадут с показаниями часов 28 декабря, то преобразования Лоренца можно будет положить на видное место в мусорное ведро. Туда же можно будет положить специальную теорию относительности. Поскольку, специальная теория относительности базируется на преобразованиях Лоренца.
Для убедительности, в таком эксперименте, можно привлечь абсолютного посредника – скорость света. Заставить свет пробегать заранее известное расстояние (например, один километр), по принципу туда и обратно (чтобы исключить влияние перемещения галактики). При этом, одними и теми же цезиевыми часами мы будем измерять время пробега светом такой двойной дистанции и 28 июня, и 28 декабря. Если ход времени в такие даты различен (согласно преобразованиям Лоренца он обязан быть различным), то преобразования Лоренца верны. Однако, мы уверены, что показания часов в такие даты будут одинаковыми, то есть цезиевые часы будут вырабатывать 9192631770 циклов колебаний излучения цезия в секунду, а, свет эти два километра (и 28 июня, и 28 декабря) пробежит одинаково в вакууме за 6670 наносекунд. Цезиевые часы при этом одинаково нащелкают 61364 цикла колебаний излучений цезия (и 28 июня, и 28 декабря).