Необыкновенная жизнь обыкновенной капли
Шрифт:
Нам, начинающим, повезло на начальников и научных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследователем и автором известных работ по теории свободной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассоциации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, актуальные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавязчиво, требуя от нас лишь инициативы и самостоятельности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, поясняя образование ударной волны в сверхзвуковом течении. Его книга «Прикладная газовая
В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без форсунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.
Есть в инженерной практике человечества счастливые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде раструба на выходе реактивного двигателя, где газ разгоняется до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геометрических форм. Кстати, древние греки могли бы получить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подобрав эмпирически сопло — раструб с определенной площадью горловины, меньшей площади выхода.
Центробежная форсунка — младшая сестра в уникальном семействе устройств, которые скупыми средствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко расходящимся конусом мелких капель, чтобы полнее насытить некий объем? Проще всего подать ее тангенциально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой закрыт, другой — сужен до малого отверстия (рис. 7). Получится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», образовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной формы: однополостной гиперболоид (рис. 8).
Течение в камере закручивания не сплошное, а полое, и мы уже видели через стеклянное дно форсунки столбик воздушного вихря. Поэтому струя на выходе из соплового отверстия превращается в кольцевую пелену, ограниченную двумя поверхностями гиперболоида толщиной несколько десятых миллиметра. При очень малых давлениях подачи (порядка десятой доли атмосферы), то есть малых скоростях истечения, капиллярные силы еще конкурируют с гидродинамическими и замыкают пелену в полую эллипсообразную форму, что соответствует так называемому режиму пузыря (рис. 9). Поверхностное натяжение силится вернуть жидкости каплеобразную форму шара — минимум поверхности при заданном объеме (известный принцип минимума поверхностной энергии для равновесной формы жидкости).
С ростом давления подачи пузырь размыкается, и течение становится обычным конусом распыливания, жидкая пелена постепенно укорачивается, сохраняя небольшой венчик у самого корня факела. В тонкой пелене секрет высокой дисперсности, мелкости капель.
Почему же во вращающейся жидкости появляется полость, воздушный вихрь, и что вообще там происходит? Центробежная форсунка — хороший повод приглядеться ближе к жидким и газовым потокам, кратко познакомиться с азбукой гидродинамики идеальной (без трения) несжимаемой жидкости. Нам станут тогда понятней события, происходящие в мире капель и струй.
Следить за пространственной картиной изменчивых жидких (и газообразных) сред удобно с помощью линий тока, проведенных касательно к скоростям в различных точках жидкости. Узор таких линий является как бы мгновенной фотографией всего происходящего на большом интервале потока. Этот метод часто более информативен, чем попытка следить за перемещением отдельных жидких частиц. Движение потока может быть установившимся, когда его картина в любом месте не меняется со временем, и неустановившимся, когда она изменчива.
Установившееся движение — это, например, река с постоянным течением, омывающая одну и ту же линию берегов, или течение в трубе при постоянном угле открытия крана. Неустановившееся —
Вращательное движение, или циркуляция, в жидкости может происходить не обязательно по кругу, а по любому контуру и имеет обобщенный характер. Оно — основа многих важных явлений, в том числе подъемной силы крыла. Проведем любой замкнутый контур в поле линий тока. Можно построить проекции скоростей частиц жидкости на касательные к контуру в каждой его точке — линия окажется оперенной стрелочками. Сумма (или, точнее, интеграл по контуру) произведений таких проекций на длины малых отрезков дуг по всем точкам называется циркуляцией по контуру; она имеет знак «+» или «—» в зависимости от направления вращения: по ходу или против хода часовой стрелки. В жидкости все частицы могут не вращаться в привычном смысле, а циркуляция будет существовать. Вращение здесь приобретает более общий кинематический смысл. Выделим в потоке элементарный «жидкий кубик» и проследим за его движением. Оно может складываться только из трёх составляющих: поступательного (перемещение параллельно себе), вращательного (поворота как твердого тела), деформационного, когда грани углов наклоняются одинаково, так что биссектрисы сохраняют свое положение. Поток, где отсутствует вращение, а «кубик» только перемещается и деформируется, называется безвихревым, или потенциальным. Если присутствуют все три движения — поток вихревой, а вихревое течение всегда несет в себе циркуляцию. В гидродинамике существует теорема У. Томсона: циркуляция в идеальной жидкости остается всегда постоянной; если ее в начале движения не было, она никогда и не появится, но, возникнув, сохраняется неизменной. В дальнейшем мы еще вспомним об этой теореме.
Выделим элементарную струйку жидкости, или «трубку тока». Ее поверхность образована траекториями жидких частиц. Струйку берут тонкой, почти одномерной, так что параметры изменяются лишь вдоль ее течения, а поперек они постоянны. Течет она в общем потоке, вместе с ним сужаясь, расширяясь, вращаясь, и меняет свои параметры: площадь поперечного сечения f , скорость w , давление Р. Ходом многих явлений в мире гидродинамики, включая и малую струйку тока в ее изменчивом течении, управляют основные законы сохранения, которые диктуют постоянство трех главных физических параметров: расхода вещества, вращения, энергии (о четвертом законе — законе сохранения импульсов, или количества движения, речь будет несколько позже).
Тут иной читатель, пусть еще не очень много знающий в нашей науке, но желающий полной ясности, пытливый, внимательный, дотошный (автор особенно расположен к такому), скажет: «Ну хорошо, мы договорились в самом начале, что жидкость условно принимается идеальной, то есть без трения, а почему ее назвали несжимаемой, ведь она течет, сужается, изгибается, принимает форму канала, камеры закручивания форсунки?» Здесь необходима точность определений: не следует смешивать любую деформацию со сжатием. Представьте себе опять-таки некий жидкий кубик в потоке. Поток непременно вытянет его в длинный столбик, то есть изменит его форму, но объем останется прежним. Это и есть несжимаемость, свойственная практически всем жидкостям при не очень больших давлениях (не выше сотен атмосфер). В газе эффект сжимаемости (изменение объема «кубика») начинает сказываться, лишь когда скорость потока приближается к звуковой. При меньших скоростях удельный вес и плотность в различных точках потока остаются близкими к постоянным.
Первый закон — закон сохранения расхода: количество жидкости, прошедшей через площадь f в секунду, то есть массовый расход, остается постоянным по всей трубке потока:
Уравнение (1) является гидродинамической формой закона сохранения вещества.
Частицы жидкости или газа ведут себя куда разумнее людской толпы, они не замедляются, не толкутся в узких проходах, а, наоборот, если канал сужается (f падает), жидкость протекает быстрее, при расширении тракта (f возрастает) скорость ее падает.
Сердце Дракона. Том 20. Часть 1
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
рейтинг книги
Холодный ветер перемен
7. Девяностые
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Последнее желание
1. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Отмороженный 7.0
7. Отмороженный
Фантастика:
рпг
аниме
рейтинг книги
Наследник
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
рейтинг книги
