Чтение онлайн

на главную - закладки

Жанры

Необыкновенная жизнь обыкновенной капли
Шрифт:

Второй закон — закон неизменности момента количе­ства движения: произведение скорости вращения и на радиус r сохраняется постоянным от одной струйки жидкости к другой. Применительно к форсунке это условие запишется так:

где vвх — скорость жидкости на входе в форсунку (на­чальная скорость закрутки), R — радиус камеры закру­чивания.

Вращающаяся жидкость — это «антикарусель»: чем меньше радиус вращения, тем больше скорость.

Третий закон —

это закон сохранения энергии едини­цы объема жидкости (уравнение Бернулли): в уста­новившемся движении идеальной жидкости сумма по­тенциальной энергии единицы объема, то есть давления и кинетической энергии, обусловленной скоростью, со­храняется постоянной вдоль всей струйки тока, в нашем случае — от исходного давления Р0 в резервуаре (балло­не) до выхода из канала. Уравнение Бернулли, связы­вающее параметры струйки, текущей сквозь форсунку, в различных поперечных сечениях имеет вид:

Здесь суммарная кинетическая энергия жидкости в сложном движении через сопло форсунки (где она идет по винтовым линиям) складывается из энергии по­ступательного движения со скоростью до и вращатель­ного — со скоростью и.

Удельная кинетическая энергия рv2/2 по аналогии с первым слагаемым Р называется скоростным или дина­мическим напором Рg — эта энергия может перейти в давление. Если текущую жидкость остановить ладонью, то вы почувствуете суммарное давление Р+Рg , которое называется полным напором (с точностью до потерь на трение; эта сумма равна давлению в баллоне).

В медицине, например, используется полный напор струи для безыгольной инъекции вакцины. Специальный импульсный шприц подает кратковременную струю высокого давления. Это «жидкая игла» безболезненно про­калывает, точнее даже, пробивает кожу.

А вот новинка хирургии — «выстрел клеем»: специ­альный биологический клей вводят из пневмопистолета струей в зону операционного разреза. Механизм дей­ствия этого целебного пистолета таков. Клей, поданный под большим динамическим напором Рg в межклеточ­ное пространство живых тканей, сдавливает сосуды, останавливая кровотечение. Оставшийся на поверхности разреза клей образует корочку, способствующую зажив­лению. В обоих устройствах потенциальная энергия на­чального давления переходит сначала в кинетическую энергию, а потом, при ударе о поверхность, снова в дав­ление.

Из уравнения Бернулли видно, что давление и ско­рость — «антагонисты»: если вдоль потока v растет, то Р падает, и наоборот — с замедлением потока повыша­ется давление. На этом явлении основан, в частности, самый простой и экономичный распылитель — парик­махерский пульверизатор, дающий широкий факел с очень тонким распыливанием при малом расходе пар­фюмерии, что вполне устраивает и парикмахера, и кли­ента. Т-образная трубочка с перекладиной наверху опу­щена во флакон с жидкостью. Воздух из резиновой гру­ши под давлением поступает в трубку, где его скорость (согласно закону сохранения расхода) резко возра­стает: ведь трубочка намного уже, чем груша. Сле­довательно, давление, согласно уравнению Бернулли, упадет, и возникшее в перекладине разрежение по вертикальной трубочке будет засасывать жидкость вверх. Там быстрый поток воздуха погонит ее к вы­ходу на другом конце перекладины, распыливая на ка­пельки.

Уравнение Бернулли позволяет просто получить при­ближенные формулы для скорости истечения и расхода жидкости из отверстия распылителя в атмосферу. За­пишем уравнение сохранения энергии (3) между на­чальным сечением в баллоне, где давление равно Ро, а скорость течения жидкости почти нулевая (баллон очень широк сравнительно с отверстием), и сечением выхода в атмосферу с давлением Ра:

Для

форсуночных и капельных нужд нам хватило трех уравнений сохранения, но мы упоминали еще о четвертом. Оно знаменательно, в частности, тем, что приводит к формуле для реактивной тяги двигателя, ле­жащей в основе всей ракетной техники. Вспомним про­стой и общеизвестный пример. Вы стоите в неподвиж­ной лодке на озере и бросаете тяжелый камень с кор­мы — лодка двинулась в противоположную сторону. Объяснение дает закон сохранения количества движе­ния (или импульса), из которого вытекает важное след­ствие: положение центра тяжести (или центра масс) системы под действием внутренних сил остается неиз­менным. До броска центр тяжести лодки со всем содер­жимым покоился в некоторой точке. Когда мы выброси» ли камень, часть массы системы ушла назад, распреде­ление масс изменилось, но центр тяжести «не имеет права» перемещаться. Чтобы сохранилось его прежнее положение в пространстве, лодка должна ‘была двинуть­ся вперед. То же и с ракетой: до запуска она была не­подвижной, но когда массы газа стали вытекать из со­пел, ракета, подчиняясь общему закону, полетела в противоположную сторону. Мощные струи газа будут вытекать из ракеты, сама она унесется далеко в космос, а центр тяжести системы «газы—ракета» останется по- прежнему в своей исходной точке, на земле. Закон ко­личества движения гласит: импульс сил — произведение сил на время их действия — равен изменению количе­ства движения всех тел в системе.

Если этот закон применить к ракете, получим фор­мулу тяги:

 P = Gwc  (7)

Здесь Р — тяга двигателя; в правой части уравне­ния — количество движения газов, вылетающих из сопла (G — массовый расход газов, wс— их скорость на срезе сопла).

Формула (7) показывает: конструктор имеет два ре­сурса для увеличения тяги — расход G и скорость wс вытекающего вещества. Но топливо и так составляет львиную долю массы всей ракеты, выше определенного запаса его не возьмешь. Вот почему поток газов в сопле (где тепловая энергия переходит в кинетическую) раз­гоняют до огромных скоростей, в несколько раз пре­вышающих скорость звука.

Четыре основных уравнения сохранения только в первом приближении — в идеальном случае установив­шегося течения невязкой, несжимаемой жидкости — за­меняют более общие законы движения жидких сред и взаимодействия их с твердыми телами. Эти сложные дифференциальные уравнения содержат время и коор­динаты перемещающихся частиц и способны дать более полную картину трехмерного мира жидкостей и газов с учетом всех действующих сил. В них входят физические константы среды: вязкость, плотность и другие, найден­ные из опыта. В них (совместно с граничными условия­ми) заложена вся информация о течении — они могут ответить на вопрос: куда и в какое время придет любая частица жидкости, предсказать все явления и факты. Многочисленные опыты и практика подтвердили их пра­во называться фундаментальными законами природы. Однако решение этих уравнений является очень слож­ным делом и не всегда возможно, даже при современ­ных ЭВМ.

Гидромеханика, как и другие естественные науки, веками поднималась к вершинам познания «в связке альпинистов»: опыт — теория. Первый шаг делает опыт, это наблюдение, установленный факт (еще не полностью понятый), использование в практике каких-то явлений. Опыт ставит задачи, подтягивает за собой теорию. Она делает следующий шаг: как правило, бросок выше по­ставленного рубежа, к математическим обобщениям. Теория многое объяснила, но теперь возникли новые задачи для опыта, в которых теория выступает уже за­казчиком: нужно проверить в эксперименте решения ее уравнений, правильность гипотез. Снова включается опыт — уже на следующей ступени, вооруженный новой приборной техникой. Так, выполняя заказ времени, из­вестный американский физик А. Майкельсон (1852— 1931) ставит в 1881 году свой знаменитый опыт по из­мерению скорости света. Он использует для этого точ­ные дифракционные решетки Роуленда. И вот резуль­тат: гибнет старая гипотеза эфира, рождается теория относительности — «связка» преодолевает величайший барьер в истории науки.

Поделиться:
Популярные книги

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Небо в огне. Штурмовик из будущего

Политов Дмитрий Валерьевич
Военно-историческая фантастика
Фантастика:
боевая фантастика
7.42
рейтинг книги
Небо в огне. Штурмовик из будущего

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Блокада. Знаменитый роман-эпопея в одном томе

Чаковский Александр Борисович
Проза:
военная проза
7.00
рейтинг книги
Блокада. Знаменитый роман-эпопея в одном томе

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Низший 2

Михайлов Дем Алексеевич
2. Низший!
Фантастика:
боевая фантастика
7.07
рейтинг книги
Низший 2

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии