Чтение онлайн

на главную - закладки

Жанры

Невидимый конфликт

Оксанович Людмил

Шрифт:

Есть возможность использовать часть прочностного резерва сталей этого типа в случае применения их в качестве арматуры. Это делается следующим образом. На специальных стендах арматурные прутья растягиваются так, чтобы была пройдена площадка текучести и реализовалась часть последующих деформаций. После этого прут, разумеется, не восстанавливает своей первоначальной длины, по сравнению с которой он увеличился примерно на 6%. Такая необратимая остаточная деформация называется пластической. Здесь, в сущности, начинается нечто особенное. Если прут повторно напрягается (уже как часть конструкции), его площадка текучести оказывается значительно выше, т.е. при значительно больших напряжениях, чем при первоначальном растяжении. Новая площадка текучести приблизительно соответствует напряжению, которое достигнуто при первоначальном растяжении. Структурные повреждения, которые произошли в стали при такой первоначальной обработке, в этом случае оказываются

полезными. Предел текучести может подняться с 2400 кг/см2 примерно до 3000 кг/см2.

Такой вид механической отработки имеет и свои отрицательные стороны. Новые свойства стали являются не такими стабильными во времени, как основные ее свойства. Но это еще только полбеды. Важно то, что таким несложным и сравнительно дешевым способом на практике «облагораживается» значительное количество низкоуглеродистой арматурной стали для железобетонных конструкций.

Практикуется также холодная вытяжка арматурной стали через отверстия с постепенно уменьшающимся диаметром. Высокие напряжения и пластические деформации в стали могут достигаться и путем так называемой холодной прокатки. Специальными вальцами мягкая сталь круглого сечения частично сдавливается, причем на ее поверхности остаются характерные отпечатки, а механический эффект в конечном счете подобен тому, который наблюдается при холодной вытяжке.

Стали такого рода могут работать с напряжением, которое для необработанных сталей находится далеко за критическим пределом текучести.

СТАЛИ XX ВЕКА

До самого последнего времени в строительстве применялись в основном мягкие, низкоуглеродистые стали типа болгарской арматурной стали класса A-I. Верхняя граница практически целесообразного их сопротивления — это предел текучести. Так как рабочий участок графика — является почти линейным, здесь в силе закон Гука о соответствии между напряжениями и деформациями. Поэтому достаточно знать величину одной из двух характеристик, чтобы найти величину другой. Следует заметить, что подобная ясность и «чистота» поведения присуща только сталям. Позже мы еще увидим, что графики работы других строительных материалов сильно отличаются от такой простой и ясной схемы пропорциональности, как график — для сталей, ужасающим образом выходя за рамки области, на которую распространяется закон Гука. Сталь — единственный материал, приближающийся по своим свойствам к однородной и упругой модели твердого тела, которой обычно оперирует строительная механика.

Чтобы в сечении возникли напряжения 2100 кг/м2 (таково расчетное сопротивление стали класса A-I)согласно закону Гука, должна реализоваться деформация 0,001 (0,1%). Это значит, что каждый метр элемента должен удлиниться на 1 мм. Подобная незначительная деформация вполне приемлема в практике строительства. Вообще необходимо отметить, что деформации в строительных конструкциях в принципе очень малы, просто несоизмеримы с размерами конструктивных элементов.

Мерилом твердости материала является его линейный модуль упругости. Он выражается как тангенс угла между отрезком «0—а» и горизонтальной осью графика — (см. рис. 6). С физической точки зрения этот модуль означает напряжение — условное напряжение, которое возникает в материале, когда образец вдвое увеличивает свою длину. С математической точки зрения это просто коэффициент пропорциональности в формуле закона Гука, которая представлена на рис. 6.

Линейный модуль упругости строительных сталей приблизительно равен 2 млн. кг/см2. Сталь в наибольшей степени отвечает требованиям прочности и твердости. Но если вариантов по твердости не так уж много, то с прочностью дело обстоит гораздо сложнее.

Рис. 7. Сравнение рабочих диаграмм мягкой, низколегированной и высокопрочных сталей. Площадка текучести постепенно исчезает, а в зоне малых, конструктивно целесообразных деформаций сопротивления продолжают нарастать

Существует достаточно много видов современных, строительных сталей. До этого мы говорили о самом распространенном из них, возможности которого наиболее ограничены. Достаточно, например, повысить содержание углерода до 0,3%, чтобы качества стали существенно изменились. Так как мы уже умеем разбираться в «паспорте» материала — в его графике —, мы сможем почерпнуть необходимую информацию на рис. 7. Поведение такой стали там показано линией II. Как можно видеть, линейная зависимость между напряжениями и деформациями здесь сохраняется до гораздо более высокого предела, чем у мягких сталей (линия I).

Площадка текучести не только значительно выше расположена, но и менее ярко выражена. Это значит, что такие стали, которые называются низколегированными, менее пластичны, чем мягкие. Например, арматурная сталь класса А-II имеет расчетное сопротивление 2700 кг/см2, а сталь класса А-III — 3600 кг/см2. Столь значительные сопротивления реализуются при соответствующих деформациях 0,13 и 0,18%. А поскольку напряжения разрушения равны соответственно 5000 и 6000 кг/см2, сталь класса А-II используется приблизительно на 55% своих предельных возможностей, а арматурная сталь класса А-III — приблизительно на 60%. Этот важный показатель использования возможностей материала для арматурной стали класса A-I едва достигает 50%. Очевидно, что у низколегированных сталей не только выше расчетное сопротивление, но в этом случае значительно полнее используются и прочностные резервы материала.

Среди довольно широкого ассортимента строительных сталей специальные высокопрочные стали являются своего рода «аристократией». Они находят применение главным образом в предварительно напряженных конструкциях, и их сопротивление действительно весьма внушительно — в 5—10 раз больше, чему вышеупомянутых сталей. В качестве примера рассмотрим высокопрочную проволоку диаметром 2,5 мм. При расчетных напряжениях 11 000 кг/см2 напряжения разрушения составляют около 16 000 кг/см2. Если теперь мы разделим одно число на другое, то увидим, что в строительстве непосредственно используется приблизительно 70% предельных возможностей материала. Это уже такой результат, который достоин уважения. К лучшему вряд ли следует стремиться, так как иначе может пострадать надежность, являющаяся гарантией против внезапного разрушения. Объяснение этому мы сможем получить из рис. 7.

Линией III показана зависимость — для подобной высокопрочной стали. Она коренным образом отличается от «поведения» мягких и низколегированных сталей. Площадка текучести полностью отсутствует; длинный, почти линейный график внезапно обрывается в точке разрушения материала — хрупкого разрушения.

Для характеристики этого явления приведем пример из прошлого. Год 1891. Место действия — Англия, станция Норвуд на железнодорожной линии Лондон — Брайтон. В этом месте был построен широкий железнодорожный путепровод с пролетом 9 м, по которому проходило семь рельсовых путей. Утром 1 мая по путепроводу в Норвуд с обычной скоростью 65 км/ч промчался почтовый поезд из Лондона. Его хвостовой вагон уже подтягивался к последней промежуточной опоре, когда вдруг с грохотом разорвалась одна из двух чугунных балок под железнодорожной колеей. Два четырехметровых обломка упали на дорогу, которая, к счастью, была пуста, а другие угрожающе повисли, неизвестно на чем держась. Состав сошел с рельсов, но все же успел миновать последний участок путепровода, не перевернувшись на крутой склон насыпи. Хвостовой вагон устоял на опоре, сильно наклонившись к пропасти и удерживаясь только благодаря зацепляющему устройству.

Разрушившаяся чугунная балка была в эксплуатации уже 31 год. После катастрофы в области разрыва был обнаружен пористый участок, оставшийся еще с того времени, когда отливалась балка. Тяжелые условия эксплуатации послужили причиной процессов, которые постепенно подрывали несущую способность элемента, подготавливая последовавшее за этим событие. Эта катастрофа вызвала большое волнение в инженерном мире Англии того времени. Из 9576 находящихся в эксплуатации мостов 2828 были чугунными. Перспектива их разрушения после примера с мостом в Норвуде была достаточно реальной, и потому было принято решение о срочной их замене.

Эта катастрофа в сотый раз доказала, что чугун — хрупкий и чувствительный к ударам материал — не подходит для строительства мостов, особенно мостов железнодорожных. Впрочем, с 1883 г. его применение для подобных целей в Англии было запрещено.

В принципе существует два вида разрушения материала — хрупкое и пластичное. Хрупкое разрушение обусловлено сцеплением между частицами; когда внешнее воздействие превосходит силы сцепления, материал внезапно разрывается. Пластичное разрушение предполагает такое сильное сцепление, что частицы материала раздвигаются, взаимно перемещаются и только потом разделяются. Именно такое взаимное смещение частиц является причиной большой деформируемости и пластичности мягких сталей. В силу обстоятельства мы вынуждены работать с расчетным сопротивлением, не превышающим предел текучести, но если в действительности конструкция окажется в состоянии перегрузки (в случае некой аварийной ситуации), она не разрушится внезапно. Напряжения сначала достигнут предела текучести, сталь начнет «течь» и сильно деформироваться. Конструкция провиснет, искривится, станет аварийной, неиспользуемой, но разрушения в буквальном смысле слова, по-видимому, вообще не произойдет.

Поделиться:
Популярные книги

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри