Невидимый конфликт
Шрифт:
Поведение дерева при нагрузке на сжатие представляет весьма разнообразную картину. После значительного почти прямолинейного участка в связи с быстрым ростом деформаций наблюдается нечто похожее на площадку текучести у мягких сталей. Другими словами, при работе на сжатие древесина обладает ярко выраженными пластическими свойствами. Разрушение начинается с искривления самых прочных волокон в направлении более слабых; при этом на поверхности испытуемого тела образуются характерные складки. При нарастании нагрузки происходит и окончательное разрушение — при напряжениях в 2—3 раза меньших, чем в случаях работы дерева на растяжение.
Полезно сравнить рассмотренные графики с рабочими диаграммами стали. Предельная (разрушающая) деформация
С другой стороны, при рабочих деформациях одного и того же порядке древесина работает со значительно меньшим напряжением. Отсюда следует, что ее жесткость, упругость и модуль упругости гораздо меньше, чем у стали. Почти в 20 раз меньше…
Когда мы рассматривали сталь, мы упомянули о еще одном сложном виде силового воздействия — об изгибе. Теперь же сделать это просто необходимо.
На изгиб работают почти все элементы почти всех видов строительных конструкций. Это, наверное, самая распространенная форма конфликта между нагрузками и конструкциями, между силовыми воздействиями и материалом.
Едва ли мы удивим кого-нибудь утверждением, что при изгибе одна часть сечения элемента подвергается сжатию, а другая — растяжению. Каждому случалось преодолевать препятствие по перекинутой доске или бревну. Физическое ощущение при этом наиболее яркое; провисающая под тяжестью нашего тела доска сама по себе достаточно отчетливо характеризует одно из главных инженерно-теоретических понятий — «изгиб». На рис. 12 показано, что верхняя часть изгибаемого элемента укоротилась, а нижняя удлинилась. Но деформация укорачивания предполагает возникновение сжимающих напряжений, а деформация удлинения — растягивающих. Следовательно, можно сказать, что изгиб — это форма одновременного сочетания растяжения и сжатия в рамках одного и того же сечения.
Практическая модель этого явления основывается на весьма простой гипотезе: предполагается, что элемент состоит из множества нитей, каждая из которых деформируется независимо от других. Кроме того, любые два сечения, находящиеся достаточно близко один от другого и перпендикулярные оси элемента, даже в случае очень сильной деформации остаются перпендикулярными провисшей оси. Физический эквивалент этого словесного описания можно видеть на рис. 12. При взаимном развороте двух сечений наиболее сильно деформируется (растягивается) нижний слой волокон. Следовательно, по закону Гука, в этом слое возникают самые большие напряжения. Волокна над этим слоем деформируются слабее и работают с меньшим напряжением. Еще слабее деформируется следующий слой волокон. Так мы доходим до среднего слоя, который вообще не деформируется и, следовательно, оказывается ненапряженным. Вверх от этого слоя деформации и напряжения снова нарастают, но с обратным знаком. Теперь это деформации сжатия.
Так как деформации распределяются линейно по высоте
Мы добрались до одной из важнейших истин, до одного из фундаментальных положений классической инженерной науки. Изгиб присутствует всегда, и определение нормальных напряжений в изгибаемых элементах осуществляется на основе вышеописанной схемы независимо от их формы, величины и материала. Мосты, ангары, жилые, общественные и промышленные здания — все конструкции, которые создает человек и которые изгибаются, проходят через «сито» точных расчетов, характерных для механики, одно из положений которой мы рассмотрели почти в классическом виде. Разумеется, на практике это делается с помощью длинных формул, по специальным алгоритмам, а вся сложная процедура называется определением размеров сечения. Цель ее состоит в том, чтобы выбрать такие размеры сечения, при которых напряжения в элементе не превышали бы известного предельного значения. Но, вообще говоря, физическая сущность явления вполне может быть рассмотрена на простой модели, о которой мы рассказали выше.
Интересно сравнить работу материала в режиме осевого растяжения (или сжатия) и в режиме изгиба. Очевидно, что при осевой нагрузке диаграмма напряжений будет постоянна и однозначна, а в работу будет вовлечено все сечение, весь объем элемента, каждый грамм материала. При изгибе же по-настоящему работать будут только крайние слои. И даже еще хуже. В области нейтральной зоны, где напряжения растяжения становятся напряжениями сжатия, материал вообще не будет работать. К сожалению, наличие материала в этом месте чуть ли не формально.
В этом смысле изгиб является «тяжелым случаем» для каждого элемента, для каждой конструкции. Наличие изгиба (а оно почти правило) вынуждает конструкторов вкладывать дополнительные количества материала, который, как мы видели, не может использоваться полноценно. Размеры пролетов, которые перекрываются конструкциями, работающими на изгиб, не так уж велики. Даже в случаях возведения специальных залов, ангаров и мостов они не превышают нескольких сотен метров. До сих пор абсолютные рекорды «преодоления» расстояний принадлежат арочным (сводчатым) и особенно висячим системам. Но там элементы работают главным образом на растяжение или сжатие и гораздо более полноценно используются возможности вложенного материала. О конструктивных формах мы еще расскажем.
Все, что до сих пор было сказано об изгибе, в большей или меньшей степени можно считать идеализацией. В сущности, мы говорили об изгибе, рассматривая теоретическую физическую модель, а не реальное тело. Гораздо важнее знать, как работают реальные материалы. Логично предположить, что выдуманные человеком законы и гипотезы не соблюдаются так полно и точно, как нам бы хотелось. Рассматривая сталь в качестве строительного материала, мы убедились, что различия там минимальны, что гипотезы и теории «скроены» почти в полном соответствии с природой стали. Однако для других строительных материалов различия эти весьма существенны: не составляет исключения и дерево — низкий и грубый материал в сравнении с благородной сталью.
Прежде всего у дерева, как, впрочем, и у всех материалов органического происхождения, сильно выражены текучесть и релаксация. Картина изгиба тоже существенно отличается от той идеальной, которую мы рассматривали. При малых напряжениях диаграмма нормальных напряжений еще может сойти за линейную. В качестве доказательства можно привести диаграммы, представленные на рис. 11. Как в случае растяжения, так и в случае сжатия при малых напряжениях рабочие графики близки к прямой, следовательно, можно сад тать, что закон Гука остается в силе. Но посмотрим, что происходит потом.