Чтение онлайн

на главную - закладки

Жанры

Невидимый конфликт

Оксанович Людмил

Шрифт:

Поведение дерева при нагрузке на сжатие представляет весьма разнообразную картину. После значительного почти прямолинейного участка в связи с быстрым ростом деформаций наблюдается нечто похожее на площадку текучести у мягких сталей. Другими словами, при работе на сжатие древесина обладает ярко выраженными пластическими свойствами. Разрушение начинается с искривления самых прочных волокон в направлении более слабых; при этом на поверхности испытуемого тела образуются характерные складки. При нарастании нагрузки происходит и окончательное разрушение — при напряжениях в 2—3 раза меньших, чем в случаях работы дерева на растяжение.

Полезно сравнить рассмотренные графики с рабочими диаграммами стали. Предельная (разрушающая) деформация

древесины при сжатии равна 0,6%. а при растяжении — 0,8%. По этим характеристикам дерево приближается к высокопрочным сталям, тогда как у мягких и низколегированных сталей они значительно выше. В интервале же практически целесообразных и допустимых деформаций положение обратное. За предел пропорциональности (точка, до которой остается в силе закон Гука) и при растяжении, и при сжатии принимается напряжение, равное половине предельной прочности. Оно может быть достигнуто при деформации 0,15% (сжатие) и 0,35% (растяжение), тогда как у мягких сталей рабочий диапазон простирается до деформации 0,1%. Таким образом, в реальных конструкциях дерево проявляет себя как материал более деформируемый, чем сталь.

С другой стороны, при рабочих деформациях одного и того же порядке древесина работает со значительно меньшим напряжением. Отсюда следует, что ее жесткость, упругость и модуль упругости гораздо меньше, чем у стали. Почти в 20 раз меньше…

Когда мы рассматривали сталь, мы упомянули о еще одном сложном виде силового воздействия — об изгибе. Теперь же сделать это просто необходимо.

На изгиб работают почти все элементы почти всех видов строительных конструкций. Это, наверное, самая распространенная форма конфликта между нагрузками и конструкциями, между силовыми воздействиями и материалом.

Рис.12. Работа элемента изогнутой балки. Изгиб является самой неприятной, но и наиболее частой формой невидимого конфликта жесткость, упругость и модуль упругости гораздо меньше, чем у стали. Почти в 20 раз меньше...

Едва ли мы удивим кого-нибудь утверждением, что при изгибе одна часть сечения элемента подвергается сжатию, а другая — растяжению. Каждому случалось преодолевать препятствие по перекинутой доске или бревну. Физическое ощущение при этом наиболее яркое; провисающая под тяжестью нашего тела доска сама по себе достаточно отчетливо характеризует одно из главных инженерно-теоретических понятий — «изгиб». На рис. 12 показано, что верхняя часть изгибаемого элемента укоротилась, а нижняя удлинилась. Но деформация укорачивания предполагает возникновение сжимающих напряжений, а деформация удлинения — растягивающих. Следовательно, можно сказать, что изгиб — это форма одновременного сочетания растяжения и сжатия в рамках одного и того же сечения.

Практическая модель этого явления основывается на весьма простой гипотезе: предполагается, что элемент состоит из множества нитей, каждая из которых деформируется независимо от других. Кроме того, любые два сечения, находящиеся достаточно близко один от другого и перпендикулярные оси элемента, даже в случае очень сильной деформации остаются перпендикулярными провисшей оси. Физический эквивалент этого словесного описания можно видеть на рис. 12. При взаимном развороте двух сечений наиболее сильно деформируется (растягивается) нижний слой волокон. Следовательно, по закону Гука, в этом слое возникают самые большие напряжения. Волокна над этим слоем деформируются слабее и работают с меньшим напряжением. Еще слабее деформируется следующий слой волокон. Так мы доходим до среднего слоя, который вообще не деформируется и, следовательно, оказывается ненапряженным. Вверх от этого слоя деформации и напряжения снова нарастают, но с обратным знаком. Теперь это деформации сжатия.

Так как деформации распределяются линейно по высоте

сечения, соответствующие напряжения тоже распределены линейно, что можно видеть и на их диаграмме. Следует обратить внимание, что напряжения, действующие перпендикулярно (или нормально) по отношению к плоскости сечения, называются нормальными напряжениями. Ниже на рисунке показаны и другие напряжения, которые действуют в плоскости сечения (тангенциально). Эти напряжения называются тангенциальными. Но не будем опережать события.

Мы добрались до одной из важнейших истин, до одного из фундаментальных положений классической инженерной науки. Изгиб присутствует всегда, и определение нормальных напряжений в изгибаемых элементах осуществляется на основе вышеописанной схемы независимо от их формы, величины и материала. Мосты, ангары, жилые, общественные и промышленные здания — все конструкции, которые создает человек и которые изгибаются, проходят через «сито» точных расчетов, характерных для механики, одно из положений которой мы рассмотрели почти в классическом виде. Разумеется, на практике это делается с помощью длинных формул, по специальным алгоритмам, а вся сложная процедура называется определением размеров сечения. Цель ее состоит в том, чтобы выбрать такие размеры сечения, при которых напряжения в элементе не превышали бы известного предельного значения. Но, вообще говоря, физическая сущность явления вполне может быть рассмотрена на простой модели, о которой мы рассказали выше.

Интересно сравнить работу материала в режиме осевого растяжения (или сжатия) и в режиме изгиба. Очевидно, что при осевой нагрузке диаграмма напряжений будет постоянна и однозначна, а в работу будет вовлечено все сечение, весь объем элемента, каждый грамм материала. При изгибе же по-настоящему работать будут только крайние слои. И даже еще хуже. В области нейтральной зоны, где напряжения растяжения становятся напряжениями сжатия, материал вообще не будет работать. К сожалению, наличие материала в этом месте чуть ли не формально.

В этом смысле изгиб является «тяжелым случаем» для каждого элемента, для каждой конструкции. Наличие изгиба (а оно почти правило) вынуждает конструкторов вкладывать дополнительные количества материала, который, как мы видели, не может использоваться полноценно. Размеры пролетов, которые перекрываются конструкциями, работающими на изгиб, не так уж велики. Даже в случаях возведения специальных залов, ангаров и мостов они не превышают нескольких сотен метров. До сих пор абсолютные рекорды «преодоления» расстояний принадлежат арочным (сводчатым) и особенно висячим системам. Но там элементы работают главным образом на растяжение или сжатие и гораздо более полноценно используются возможности вложенного материала. О конструктивных формах мы еще расскажем.

Все, что до сих пор было сказано об изгибе, в большей или меньшей степени можно считать идеализацией. В сущности, мы говорили об изгибе, рассматривая теоретическую физическую модель, а не реальное тело. Гораздо важнее знать, как работают реальные материалы. Логично предположить, что выдуманные человеком законы и гипотезы не соблюдаются так полно и точно, как нам бы хотелось. Рассматривая сталь в качестве строительного материала, мы убедились, что различия там минимальны, что гипотезы и теории «скроены» почти в полном соответствии с природой стали. Однако для других строительных материалов различия эти весьма существенны: не составляет исключения и дерево — низкий и грубый материал в сравнении с благородной сталью.

Прежде всего у дерева, как, впрочем, и у всех материалов органического происхождения, сильно выражены текучесть и релаксация. Картина изгиба тоже существенно отличается от той идеальной, которую мы рассматривали. При малых напряжениях диаграмма нормальных напряжений еще может сойти за линейную. В качестве доказательства можно привести диаграммы, представленные на рис. 11. Как в случае растяжения, так и в случае сжатия при малых напряжениях рабочие графики близки к прямой, следовательно, можно сад тать, что закон Гука остается в силе. Но посмотрим, что происходит потом.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Кай из рода красных драконов

Бэд Кристиан
1. Красная кость
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кай из рода красных драконов

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Измена. Отбор для предателя

Лаврова Алиса
1. Отбор для предателя
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Отбор для предателя

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Птичка в академии, или Магистры тоже плачут

Цвик Катерина Александровна
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Птичка в академии, или Магистры тоже плачут

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец