Чтение онлайн

на главную - закладки

Жанры

Нейронный сети. Эволюция
Шрифт:

Запишем в явном виде функцию ошибки, которая представляет собой сумму возведенных в квадрат разностей между целевым и фактическим значениями:

Разобьем пример на более простые части, как мы это делали при дифференцировании сложных функций:

Продифференцируем

обе части поочередно:

Так как выход нейрона – f(x) = y, а взвешенная сумма – у = I wij*xi, где xi – известная величина (константа), а весовые коэффициенты wij – переменная, производная по которой, дает как мы знаем единицу, то взвешенную сумму можно разбить на сумму простых множителей:

Откуда нетрудно найти:

Значит, для того чтобы обновить весовой коэффициент по своей связи:

Прежде чем записать окончательный ответ, избавимся от множителя 2 в начале выражения. Мы спокойно можем это сделать, поскольку нас интересует только направление градиента функции ошибки. Не столь важно, какой множитель будет стоять в начале этого выражения, 1, 2 или любой другой (лишь немного потеряем в масштабировании, направление останется прежним). Поэтому для простоты избавимся от неё, и запишем окончательный вид производной ошибки:

Всё получилось! Это и есть то выражение, которое мы искали. Это ключ к тренировке эволюционировавшего нейрона.

Как мы обновляем весовые коэффициенты

Найдя производную ошибки, вычислив тем самым наклон функции ошибки (подсветив фонариком, подходящий участок для спуска), нам необходимо обновить наш вес в сторону уменьшения ошибки (сделать шаг в сторону подсвеченного фонарем участка). Затем повторяем те же действия, но уже с новыми (обновлёнными) значениями.

Для понимания как мы будем обновлять наши коэффициенты (делать шаги в нужном направлении), прибегнем к помощи так уже нам хорошо знакомой – иллюстрации. Напомню, величина шага зависит от крутизны наклона прямой (tg). А значит величина, на которую мы обновляем наши веса, в соответствии со своим входом, и будет величиной производной по функции ошибки:

Вот теперь иллюстрируем:

Из графика видно, что

для того чтобы обновить вес в большую сторону, до значения (w2), нужно к старому значению (w1) прибавить дельту (w), откуда: (w2 = =w1+w). Приравняв (w) к производной ошибки (величину которой уже знаем), мы спускаемся на эту величину в сторону уменьшения ошибки.

Так же замечаем, что (E2 – E1 = -E) и (w2 w1 = w), откуда делаем вывод:

w = -E/w

Ничего не напоминает? Это почти то же, что и дельта линейного классификатора (А = E/х), подтверждение того что наша эволюция прошла с поэтапным улучшением математического моделирования. Таким же образом, как и с обновлением коэффициента (А = А+А), линейного классификатора, обновляем весовые коэффициенты:

новый wij = старый wij – (E/w)

Знак минус, для того чтобы обновить вес в большую сторону, для уменьшения ошибки. На примере графика – от w1 до w2.

В общем виде выражение записывается как:

новый wij = старый wij dE/dwij

Еще одно подтверждение, постепенного, на основе старого аппарата, хода эволюции, в сторону улучшения классификации искусственного нейрона.

Теперь, зайдем с другой стороны функции ошибки:

Снова замечаем, что (E2 – E1 = E) и (w2 w1 = w), откуда делаем вывод:

w = E/w

В этом случае, для обновления весового коэффициента, в сторону снижения функции ошибки, а значит до значения находящееся левее (w1), необходимо от значения (w1) вычесть дельту (w):

новый wij = старый wij E/w

Получается, что независимо от того, какого знака производная ошибки от весового коэффициента по входу, вычитая из старого значения – значение этой производной, мы движемся в сторону уменьшения функции ошибки. Откуда можно сделать вывод, что последнее выражение, общее для всех возможных случаев обновления градиента.

Запишем еще раз, обновление весовых коэффициентов в общем виде:

новый wij = старый wij dE/dwij

Но мы забыли еще об одной важной особенности… Сглаживания! Без сглаживания величины дельты обновления, наши шаги будут слишком большие. Мы подобно кенгуру, будем прыгать на большие расстояния и можем перескочить минимум ошибки! Используем прошлый опыт, чтоб устранить этот недочёт.

Поделиться:
Популярные книги

Красная королева

Ром Полина
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Красная королева

Слабость Виктории Бергман (сборник)

Сунд Эрик Аксл
Лучший скандинавский триллер
Детективы:
триллеры
прочие детективы
6.25
рейтинг книги
Слабость Виктории Бергман (сборник)

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

По дороге на Оюту

Лунёва Мария
Фантастика:
космическая фантастика
8.67
рейтинг книги
По дороге на Оюту

Сумеречный Стрелок 10

Карелин Сергей Витальевич
10. Сумеречный стрелок
Фантастика:
рпг
аниме
фэнтези
5.00
рейтинг книги
Сумеречный Стрелок 10

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни

Битва королей

Мартин Джордж Р.Р.
2. Песнь Льда и Огня
Фантастика:
фэнтези
9.61
рейтинг книги
Битва королей

Таня Гроттер и магический контрабас

Емец Дмитрий Александрович
1. Таня Гроттер
Фантастика:
фэнтези
8.52
рейтинг книги
Таня Гроттер и магический контрабас

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2