Чтение онлайн

на главную - закладки

Жанры

Нейросети. Обработка аудиоданных
Шрифт:

Частотное представление:

Преобразование Фурье переводит этот временной сигнал в частотное представление. Оно разбивает сигнал на различные частоты, которые его составляют, и показывает, какие частоты присутствуют и с какой амплитудой. В частотном представлении вы уже не видите, как амплитуда меняется во времени, но зато можете точно определить, какие частоты преобладают в сигнале.

Пример музыкальной ноты:

Для наглядного примера представьте себе музыкальную ноту, например, ля (A) на гитаре. Во временной области вы увидите график, который колеблется вверх и

вниз с определенной частотой. Эта частота представляет основную частоту ноты ля. Однако, помимо основной частоты, в этом звуке также присутствуют высшие гармоники, которые кратны основной частоте. Преобразование Фурье разложит этот сигнал на его основную частоту и гармоники, позволяя точно определить, какие компоненты составляют этот звук.

Преобразование Фурье позволяет перейти от временного анализа аудиосигнала к его частотному анализу, что является неотъемлемой частью аудиообработки и спектрального анализа аудиоданных.

Практическое применение:

Преобразование Фурье находит широкое применение в аудиообработке. Например, при помощи него можно:

– Определить основную частоту в аудиосигнале, что полезно при тюнинге музыкальных инструментов.

– Выделять гармоники и устанавливать их амплитуды для синтеза звука.

– Анализировать частотный спектр аудиосигнала для обнаружения шумовых компонент и фильтрации нежелательных частот.

– Выполнять спектральную классификацию и распознавание аудиосигналов.

Давайте рассмотрим пример задачи, в которой мы используем Преобразование Фурье для анализа аудиосигнала и визуализируем его спектральное представление с помощью Python. В этом примере мы будем использовать библиотеку NumPy для вычислений и библиотеку Matplotlib для визуализации.

```python

import numpy as np

import matplotlib.pyplot as plt

# Создаем симулированный аудиосигнал (например, синусоиду)

sample_rate = 1000 # Частота дискретизации в Гц

duration = 1.0 # Продолжительность сигнала в секундах

t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)

frequency = 5 # Частота синусоиды в Гц

signal = np.sin(2 * np.pi * frequency * t)

# Выполняем Преобразование Фурье

fft_result = np.fft.fft(signal)

freqs = np.fft.fftfreq(len(fft_result), 1 / sample_rate) # Частоты

# Визуализируем спектральное представление

plt.figure(figsize=(10, 4))

plt.subplot(121)

plt.plot(t, signal)

plt.title('Временное представление аудиосигнала')

plt.xlabel('Время (с)')

plt.ylabel('Амплитуда')

plt.subplot(122)

plt.plot(freqs, np.abs(fft_result))

plt.title('Спектральное представление аудиосигнала')

plt.xlabel('Частота (Гц)')

plt.ylabel('Амплитуда')

plt.xlim(0, 20) # Ограничиваем частотный диапазон

plt.show

```

В этом примере мы создаем синусоидальный аудиосигнал, выполняем Преобразование Фурье для анализа его спектральных компонент, и визуализируем результаты. Первый график показывает временное представление сигнала, а второй график показывает спектральное представление, выделяя основную частоту синусоиды.

Вы

можете экспериментировать с различными сигналами и частотами, чтобы лучше понять, как Преобразование Фурье позволяет анализировать аудиосигналы в
частотной области.

Преобразование Фурье в аудиотехнологиях:

В аудиотехнологиях часто используется быстрое преобразование Фурье (FFT), что позволяет эффективно вычислять спектр аудиосигнала в реальном времени. Оно является основой для многих алгоритмов аудиообработки, таких как эквалайзеры, компрессоры, реверберации и другие аудиоэффекты.

Преобразование Фурье играет важную роль в анализе и обработке аудиосигналов, обеспечивая возможность изучать и манипулировать спектральными характеристиками звуковых записей и создавать разнообразные аудиоэффекты.

Вейвлетпреобразование – это более продвинутый метод, который позволяет анализировать аудиосигналы на разных временных и частотных масштабах. Вейвлет-преобразование разлагает сигнал, используя вейвлет-функции, которые могут быть масштабированы и сдвинуты. Это позволяет выделять как быстрые, так и медленные изменения в сигнале, что особенно полезно при анализе звука с переменной частотой и интенсивностью.

Концепция Вейвлет-преобразования включает в себя несколько шагов, которые позволяют анализировать аудиосигналы на различных временных и частотных масштабах. Рассмотрим эти шаги более подробно:

1. Выбор вейвлета: Первым шагом является выбор подходящего вейвлета. Вейвлет – это специальная функция, которая используется для разложения сигнала. Разные вейвлеты могут быть более или менее подходящими для различных типов сигналов. Например, вейвлет Добеши (Daubechies) часто используется в аудиообработке.

2. Разложение сигнала: Сигнал разлагается на вейвлет-коэффициенты, используя выбранный вейвлет. Этот шаг включает в себя свертку сигнала с вейвлет-функцией и вычисление коэффициентов на разных масштабах и позициях во времени.

3. Выбор временных и частотных масштабов: Вейвлет-преобразование позволяет анализировать сигнал на различных временных и частотных масштабах. Это достигается за счет масштабирования и сдвига вейвлет-функции. Выбор конкретных масштабов зависит от задачи анализа.

4. Интерпретация коэффициентов: Полученные вейвлет-коэффициенты представляют собой информацию о том, какие временные и частотные компоненты присутствуют в сигнале. Это позволяет анализировать изменения в сигнале на разных временных и частотных масштабах.

Поделиться:
Популярные книги

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8

АллатРа

Новых Анастасия
Научно-образовательная:
психология
история
философия
обществознание
физика
6.25
рейтинг книги
АллатРа

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Барон Дубов 6

Карелин Сергей Витальевич
6. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 6

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12