Чтение онлайн

на главную - закладки

Жанры

Нейросети. Обработка аудиоданных
Шрифт:

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется категориальная кросс-энтропия для каждого примера. Формула для вычисления категориальной кросс-энтропии для одного примера i выглядит следующим образом:

Categorical Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая категориальная кросс-энтропия для всего набора данных вычисляется как среднее значение категориальной кросс-энтропии для всех примеров.

Важно отметить, что в задачах

многоклассовой классификации категориальная кросс-энтропия учитывает, как хорошо модель предсказывает вероятности для всех классов. Если предсказания близки к фактическим меткам классов, то значение категориальной кросс-энтропии будет близким к нулю, что указывает на хорошую производительность модели.

Важным аспектом применения категориальной кросс-энтропии является использование активационной функции "Softmax" на выходном слое модели, чтобы преобразовать необработанные значения в вероятности классов. Категориальная кросс-энтропия обычно работает с этими вероятностями, что делает её подходящей для задач многоклассовой классификации.

Бинарная кросс

энтропия

:

Применяется в задачах бинарной классификации

,

где есть два класса

.

Бинарная кросс-энтропия (Binary Cross-Entropy), также известная как логистическая потеря (Logistic Loss), является функцией потерь, применяемой в задачах бинарной классификации, где есть два класса: класс "положительный" и класс "отрицательный". Эта функция потерь измеряет расхождение между предсказанными вероятностями и фактичными метками классов.

Применение бинарной кросс-энтропии в задачах бинарной классификации выглядит следующим образом:

1. Модель предсказывает вероятности для класса "положительный" (обычно обозначенного как класс 1) и вероятности для класса "отрицательный" (обычно обозначенного как класс 0) для каждого примера. Обычно это делается с использованием активационной функции "Sigmoid", которая преобразует необработанные выходы модели в вероятности, лежащие в интервале от 0 до 1.

2. Фактичные метки классов для каждого примера также представляются в виде бинарного вектора, где один элемент вектора равен 1 (класс 1 – "положительный"), а другой элемент равен 0 (класс 0 – "отрицательный").

3. Сравнивая предсказанные вероятности моделью с фактичными метками классов, вычисляется бинарная кросс-энтропия для каждого примера. Формула для вычисления бинарной кросс-энтропии для одного примера i выглядит следующим образом:

Binary Cross-Entropy(i) = -[Фактичная метка(i) * log(Предсказанная вероятность(i)) + (1 – Фактичная метка(i)) * log(1 – Предсказанная вероятность(i))]

4. Итоговая бинарная кросс-энтропия для всего набора данных вычисляется как среднее значение бинарной кросс-энтропии для всех примеров.

Бинарная кросс-энтропия имеет следующие ключевые особенности:

– Она является подходящей функцией потерь для задач бинарной классификации, где прогнозируется принадлежность к одному из двух классов.

– Она штрафует модель за неверные и неуверенные предсказания, что способствует обучению более уверенных классификаций.

Она легко интерпретируется и может быть использована для оценки вероятностных предсказаний модели.

Бинарная кросс-энтропия является стандартным выбором функции потерь в задачах бинарной классификации и широко используется в таких приложениях, как определение спама в электронной почте, детекция болезней на медицинских изображениях и другие задачи, где необходимо разделять два класса.

Среднее абсолютное отклонение (MAE): Среднее абсолютное отклонение (Mean Absolute Error, MAE) – это функция потерь, применяемая в задачах регрессии. Она измеряет среднее абсолютное отклонение между предсказанными значениями модели и фактическими значениями в данных. MAE предоставляет информацию о средней величине ошибки модели в абсолютных единицах, что делает её более интерпретируемой.

Принцип работы MAE заключается в следующем:

1. Для каждого примера в наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.

2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.

3. Абсолютное значение ошибки для каждого примера вычисляется, то есть разница превращается в положительное число.

4. Среднее абсолютное отклонение вычисляется как среднее значение всех абсолютных ошибок.

Формула MAE для одного примера i выглядит следующим образом:

MAE(i) = |Предсказанное значение(i) – Фактическое значение(i)|

Для всего набора данных с N примерами формула MAE выглядит так:

MAE = (1/N) * ? |Предсказанное значение(i) – Фактическое значение(i)| от i=1 до N

Главная особенность MAE заключается в том, что она измеряет среднюю величину ошибки в абсолютных единицах, что делает её более интерпретируемой для конкретной задачи регрессии. Когда MAE меньше, это указывает на то, что модель делает более точные предсказания и ошибки в предсказаниях меньше. MAE также менее чувствителен к выбросам, чем среднеквадратичная ошибка (MSE), поскольку не возводит ошибки в квадрат, что позволяет ему лучше учитывать аномальные значения.

Выбор функции потерь напрямую зависит от природы задачи и типа данных, с которыми вы работаете. Важно подобрать функцию потерь, которая наилучшим образом отражает цель вашей модели и позволяет ей научиться достаточно хорошо решать поставленную задачу.

3.3. Применение глубокого обучения к аудиоданным

Применение глубокого обучения к аудиоданным – это область исследований и практического применения, связанная с использованием нейронных сетей и других методов машинного обучения для анализа, обработки и понимания аудиоинформации. Эта область имеет множество приложений и может охватывать различные задачи, связанные с аудиоданными, такие как распознавание речи, музыкальный анализ, обнаружение аномалий, сжатие аудио, перевод речи и многое другое.

Поделиться:
Популярные книги

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Наследие Маозари 5

Панежин Евгений
5. Наследие Маозари
Фантастика:
фэнтези
юмористическое фэнтези
5.00
рейтинг книги
Наследие Маозари 5

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам