Чтение онлайн

на главную - закладки

Жанры

Новая Модель Вселенной
Шрифт:

Гауссова система координат отличается от декартовой тем, что ее можно применить к пространству любого рода независимо от его свойств. Она автоматически приспосабливается к любому пространству, в то время как декартова система координат требует пространства с определенными свойствами, т.е. геометрического пространства.

Продолжая сравнение специальной и общей теорий относительности, Эйнштейн пишет:

Специальная теория относительности применяется в тех областях, где не существует гравитационного поля. В этой связи, примером является твердое тело-эталон в состоянии движения, т.е. твердое тело, движение которого

выбрано таким образом, что к нему применимо положение об однородном прямолинейном движении «изолированных» материальных точек.

Чтобы сделать ясными принципы общей теории относительности, Эйнштейн сравнивает сферу пространства-времени с диском, который равномерно вращается вокруг центра в собственной плоскости. Наблюдатель, находящийся на этом диске, считает, что диск «пребывает а покое»; а силу, действующую на него и вообще на все тела, покоящиеся относительно диска, он принимает за силу гравитационного поля.

Этот наблюдатель, находясь на своем диске, проводит опыты с часами и измерительными стержнями. Проводя эти опыты, он намерен получить точные данные о времени и пространстве в пределах своего диска.

Для начала он помещает одни из двух одинаково устроенных часов в центре диска, а другие – на его краю, так что и те, и другие находятся относительно диска в покое...

Таким образом, на нашем диске, или, в более общем случае, в любом гравитационном поле, часы в зависимости от своего местоположения будут, пребывая в «покое», отставать или спешить. По этой причине правильное определение времени при помощи часов, пребывающих в покое относительно некоторого эталона, оказывается невозможным. Сходная трудность возникает, если мы попытаемся применить в этом случае традиционное определение одновременности...

Определение пространственных координат также представляет собой непреодолимые трудности. Если наблюдатель, движущийся вместе с диском, пользуется своим стандартным измерительным стержнем (достаточно коротким по сравнению с длиной радиуса диска), располагая его по касательной к краю диска, тогда... длина этого стержня окажется меньше действительной, поскольку движущиеся тела укорачиваются в направлении движения. Наоборот, измерительный стержень, который расположен на диске в радиальном направлении, не укоротится.

По этой причине употребляют не твердые, а упругие эталоны, которые не только движутся в любом направлении, но и во время движения в разной степени меняют свою форму. Для определения времени служат часы, закон движения которых может быть любым, даже неправильным. Нам нужно представить себе, что каждые из часов укреплены в какой-то точке на нетвердом, упругом эталоне. Часы удовлетворяют только одному условию, а именно: «показания», которые наблюдаются одновременно на соседних часах (в данном пространстве), отличаются друг от друга на бесконечно малые промежутки времени. Такой нетвердый, упругий эталон, который с полным основанием можно назвать «эталонным моллюском», в принципе эквивалентен произвольно взятой четырехмерной гауссовой системе координат. Этому «моллюску» некоторую удобопонятность по сравнению с гауссовой системой придает (фактически неоправданное) формальное сохранение отдельных пространственно-временных координат в противоположность временной координате. Любая точка «моллюска» уподобляется пространственной точке, и любая материальная точка, находящаяся в покое относительно него, уподобляется покоящейся, пока «моллюска» рассматривают в качестве эталона. Общий принцип относительности настаивает, что всех таких «моллюсков» можно с равным правом и одинаковым успехом

использовать в качестве эталонов при формулировках основных законов природы; сами же законы должны быть совершенно независимы от выбора «моллюска»...

Касаясь фундаментального вопроса о форме мира, Эйнштейн пишет:

Если поразмыслить над вопросом о том, в каком виде следует представлять себе вселенную как целое, то первым ответом напрашивается следующий: что касается пространства и времени, то вселенная бесконечна. Везде есть звезды, так что плотность материи, хотя местами и самая разнообразная, в среднем остается одной и той же. Иными словами, как бы далеко мы ни удалились в пространстве, повсюду мы встретим разреженные скопления неподвижных звезд примерно одного типа и плотности...

Эта точка зрения не гармонирует с теорией Ньютона. Последняя в какой-то мере требует, чтобы вселенная имела своего рода центр, где плотность звезд была бы максимальной; по мере того, как мы удаляемся от этого центра, групповая плотность звезд будет уменьшаться, пока наконец на больших расстояниях не сменится безграничной областью пустоты. Звездная вселенная по Ньютону должна быть конечным островком в бесконечной пучине пространства...

Причина невозможности неограниченной вселенной, согласно теории Ньютона, состоит в том, что интенсивность гравитационного поля на поверхности сферы, заполненной материей даже очень малой плотности, будет возрастать с увеличением радиуса сферы и в конце концов станет бесконечно большой, что невозможно...

Развитие неевклидовой геометрии привело к признанию того, что можно отбросить всякие сомнения в бесконечности нашего пространства, не приходя при этом в конфликт с законами мышления или опыта.

Признавая возможность подобных выводов, Эйнштейн описывает мир двухмерных существ на сферической поверхности:

В противоположность нашей вселенная этих существ двухмерна; как и наша, она распространяется до бесконечности...

Поверхность мира двухмерных существ составляет «пространство». Это пространство обладает весьма необычными свойствами. Если бы существа, живущие на сферической поверхности, стали проводить в своем «пространстве» круги, т.е. описывать их на поверхности своей сферы, эти круги возрастали бы до некоторого предела, а затем стали бы уменьшаться.

Вселенная таких существ конечна, но не имеет границ.

Эйнштейн приходит к заключению, что существа сферической поверхности сумели бы установить, что живут на сфере, и, возможно, определить радиус этой сферы, если бы им удалось исследовать достаточно большую часть пространства, т.е. своей поверхности.

Но если эта часть окажется очень малой, они не смогут найти наглядных доказательств того, что живут на поверхности сферического «мира», а не на евклидовой плоскости; малая часть сферической поверхности лишь незначительно отличается от части плоскости такой же величины...

Итак, если бы существа сферической поверхности жили на планете, солнечная система которой занимает ничтожно малую часть сферической вселенной, они не смогли бы определить, где они живут: в конечной или в бесконечной вселенной, поскольку та «часть вселенной», к которой они имеют доступ, в обоих случаях окажется практически евклидовой плоскостью...

Для двухмерной вселенной существует и трехмерная аналогия, а именно: трехмерное сферическое пространство, открытое Риманом. Оно обладает конечным объемом, определяемым его «радиусом»...

Поделиться:
Популярные книги

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Двойник Короля

Скабер Артемий
1. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля

В семье не без подвоха

Жукова Юлия Борисовна
3. Замуж с осложнениями
Фантастика:
социально-философская фантастика
космическая фантастика
юмористическое фэнтези
9.36
рейтинг книги
В семье не без подвоха

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри