Новые источники энергии
Шрифт:
Его конструкция включает вращающиеся грузы и электроприводы, создается постоянный крутящий момент. Приводы затрачивают примерно 500 ватт в начале работы (разгон), а затем всего 50 ватт, при 30 оборотах в минуту, вырабатывая 12 киловатт. Инженеры фирмы Ролс Ройс тестировали данное устройство, готовятся контракты с производственниками в Китае. Ориентировочная цена на рынке составит 5000 долларов за привод мощностью 12 киловатт (без цены электрогенератора). Габариты составят не более 1,5 кубометра. Вес машины мощностью 6 кВт составляет около 120 кг, а для 12 кВт машины – 200 кг. Отметим, что данный принцип задействует инерциальные (гироскопические) эффекты, возникающие при вращении эксцентриков, поэтому такие машины могут быть намного компактнее простых несбалансированных колес. Например, машины Дмитриева и Амарасингама похожи, но у Дмитриева вес машины мощностью 5 кВт, теоретически, составит около тонны.
Работает машина Амарасингама тихо, создавая шум на уровне обычного кондиционера. Производство планируется около 100 тысяч генераторов в год, для начала будут выпускаться машины мощностью 3 киловатта, 6 киловатт и 12 киловатт. Маленькая машина (3 киловатта) будет стоить примерно 750 долларов при серийном производстве. Основные комплектующие будут производиться в Китае, сборка в Европе.
Боб Амарасингам сказал репортеру местной газеты про сторонников термоядерной энергетической программы: «Они потратили 500 миллиардов долларов на поиск решения в области синтеза, тогда как решение было по-детски простое».
Гравитационное поле планеты – не единственный источник свободной энергии, который можно использовать для энергоснабжения. Рассматривая центробежные силы, как вариант искусственного гравитационного поля, мы находим новые варианты конструирования источников энергии. Перейдем к следующей главе.Глава 4 Центробежная сила
Российское патентное ведомство, как известно, не принимает заявки на патент, если в нем описано «движение за счет внутренних сил». Это правильно, но нельзя забывать о том, что все тела находятся в постоянном взаимодействии и энергообмене с эфиром, а явление инерции имеет эфиродинамическую природу. В данной главе, мы рассмотрим несколько простых решений, которые позволяют получать движение за счет взаимодействия с окружающей эфирной средой.
В журнале Cassier’s Magazine Том 29, в 1906 году были показаны несколько схем, в которых предполагается использовать особую геометрию ротора для создания асимметричного внутреннего давления газа или другой упругой среды, возникающей при его вращении. Отметим, что Луи Кассиер (Louis Cassier) в период 1891–1913 год (более двадцати лет подряд) публиковал интереснейшие статьи о развитии техники. Благодаря ему, многие идеи изобретателей того времени нам сейчас известны. Архивы его журнала на английском в свободном распространении можно найти в Интернет. Схема, представленная на рис. 28, судя по информации из журнала Cassier’s Magazine, предложена публике в 1902 году.
Рис. 28. Ротор заполнен газом или другой упругой средой
Каждый из четырех элементов корпуса (лучей) снабжен клапаном для накачки внутрь него воздуха или какого-либо газа. Устройство не начинает вращаться самостоятельно. Для запуска, его необходимо привести во вращение рукой. Автор данного изобретения нам пока не известен. Схема очень перспективная, и не имеет аналогов по простоте конструктивного исполнения.
Рассмотрим условия создания крутящего момента. Предположим, что внутри четырех «лучей» корпуса находится газ, или другое упругое рабочее тело, имеющее инерциальную массу. Существенным здесь является фактор упругости рабочего тела, которое будет неравномерно сжиматься под действием центробежной силы. Несжимаемая жидкость, в данной ситуации, не будет давать ожидаемый эффект, так как она будет давить во все стороны с одинаковой силой. Упругое сжимаемое рабочее тело давит на корпус неравномерно, в основном, вдоль радиуса вращения.
Векторная схема показана на рис. 29, где отмечено наличие тангенциальной компоненты, обуславливающей вращение ротора машины.
Из рассмотрения векторов, показанных на рис. 29, можно предположить, что сжимаемая упругая «рабочая масса» будет давить на тангенциальные стороны корпуса с большей силой, чем на радиальные, что создаст крутящий момент и постоянное ускорение ротора.
Работоспособность данной схемы можно обосновать только наличием в окружающей упругой среде реакции на деформации упругого рабочего тела. В таком случае, крутящий момент на валу данного устройства должен быть эквивалентен эффекту «закручивания» окружающей эфирной среды, в области работы данного устройства.
Позволю себе несколько изменить схему, показанную на рис. 29, и предложить большее число «лучей», рис. 30. Это не принципиально, но «полезная» поверхность полого корпуса, создающая тангенциальную составляющую силы, в такой конструкции увеличена. Надеюсь, Вам хорошо знаком данный старославянский символ Солнца.
Устройство, показанное на рис. 31, предлагается мной для практического применения, в области энергоснабжения и движителей аэрокосмических систем.
В таком варианте, можно ожидать проявление не только тангенциальной составляющей силы, но и ее осевой компоненты. Наличие осевой компоненты позволяет получать осевую движущую (подъемную) силу.
На рис. 32 показан вариант выполнения ротора, изготовление которого из цельного диска требует фрезеровки треугольных (в простом случае) полостей для упругой и сжимаемой «рабочей массы». Разумеется, нужны еще две герметичные крышки. Возможно выполнение фрезеровки с наклоном по отношению к оси вращения (согласно идеи, показанной на рис. 91), чтобы получить не только тангенциальную, но и осевую (подъемную) компоненту движущей силы.
Является ли данная идея фантазиями на тему «движение за счет внутренних сил» или это практически полезная технология? Вопрос о работоспособности идей, показанных на рис. 28 – рис. 32, можно проверить практическим путем, так как эти конструкции несложные, а вариантов выбора упругой рабочей инерциальной массы достаточно много. Предлагается провести
Публикуя данные идеи, я предполагаю их успешную коммерциализацию, и, желательно, с моим участием. Дальнейшее развитие проекта зависит от Ваших производственных возможностей. Для начала, нам необходимо небольшое опытное производство, чтобы исследовать в ходе опытно-конструкторских работ основные факторы улучшения данной технологии, и найти способы ее оптимальной реализации в процессе серийного производства. Подробнее, этот и другие проекты показаны в моей книге «Новые космические технологии», 2012 г.
Перейдем к центробежным машинам с реактивным эффектом, то есть аналогам турбины Герона Александрийского. Схема показана на рис. 33. В трактате «Пневматика», примерно 120 лет до нашей эры, Герон описал различные машины, приводимые в движение сжатым воздухом или паром за счет реактивного эффекта. Например, «эолипил» Герона представлял собой первую паровую турбину в форме шара, вращаемую силой струй водяного пара, вылетающего под большим давлением из тангенциально расположенных сопел.
Турбина Герона использует давление пара, как и современные паровые и другие газотурбинные машины, на которых основана современная энергетика. «Давление пара» – эти важные слова крепко сидят в головах всех энергетиков и машинистов паровозов. Для создания давления надо нагреть воду, то есть, жечь газ, уголь, мазут. тогда будет вращаться турбина электрогенератора. Г оспода энергетики, вас обманывают! Давление, как результат центробежной силы, создается без топлива, почти даром! Это известно тысячи лет, но вам это не рассказывали. или вы это забыли.
Примерно в 1760 году, двигатель, основанный на реактивном действии вытекающей воды, изобрел Иоганн Андреас фон Зегнер (Johann Andreas von Segner). Зегнер не ставил перед собой задачу получения автономно работающей машины. Он применил метод использования центробежной силы для ускорения ротора водяной мельницы – машины, которая производила полезную работу при подаче в нее извне потока воды. Однако, суть его идеи в том, что мощность машины зависит не только от кинетической энергии потока воды. В такой машине можно создавать любое давление струи на выходе, так как оно увеличивается при увеличении скорости вращения ротора: центробежная сила ускоряет рабочую массу, и создает эффект отрицательного давления (разряжения) на входе потока в ротор. Перепад давления растет. Это обуславливает избыточную мощность. В основе многих предлагаемых центробежных машин есть общий принцип «Сегнерова колеса». Режим самовращения «модернизированного» Сегнерова колеса можно упрощенно представить себе так, как показано на рис. 34.
Важные нюансы. Первое, при условии, что система герметичная , и вода поступает в ротор самостоятельно за счет перепада давления, а не накачивается насосом, такой ротор будет самоускоряться, пока в него поступает вода. В центре, вдоль оси, поток воды движется с меньшей скоростью, чем на выходе, поэтому сечение трубы на входе должно быть больше суммарного сечения всех сопел. Отметим, что кроме крутящего момента, в конструкции создается парный эффект – осевая тяга.
Другая конструктивная тонкость – рабочая жидкость должна быть сжимаемая . Алгоритм включает фазы сжатия за счет центробежных сил и расширение, при этом в системе возникает дополнительная кинетическая энергия за счет высвобождения потенциальной энергии сжатия. Прирост кинетической энергии потока мы сможет использовать на крыльчатках турбины или другим способом. Для выполнения этих условий, необходимо позволить воде при движении ускоряться за счет влияния центробежных сил. Оптимальной траекторией ее движения, теоретики называют логарифмическую спираль переменного радиуса, показанную на рис. 35.
Некоторые современные центробежные насосы и вентиляторы уже имеют именно такую конструкцию лопастей или траектории движения рабочей массы, поэтому они очень эффективны. В упрощенном варианте, движение массы воды по плоской или конусной спирали с любым увеличением радиуса, дает воде возможность ускоряться, и создавать дополнительный крутящий момент для ротора.
Возможно, использование воздуха в роли рабочей массы будет проще, но он намного легче, поэтому скорости вращения будут значительно больше, а это потребует качественного изготовления вращающихся деталей машин и обработки (полировки) корпуса. Теоретически, все представляется не очень сложным.
Рассмотрим наиболее известный и достоверный пример реализации технического устройства, работающего в соответствии с данными принципами: мотор Клема (Clem motor), использующий центробежную силу для самовращения. В 1972 году, Ричард Клем работал оператором тяжелой техники в Далласе, США. Он заметил, что обычный разбрызгиватель горячего асфальта продолжает вращаться еще час после того, как отключают его привод. Ось такой машины вертикальная, а ротор имеет конусную форму. Клемм не знал теории, он начал изучать вопрос эмпирически, и построил самовращающийся «мотор Клема». На рис. 36 показана принципиальная схема такого генератора, который может использовать центробежную силу при движении жидкой массы по конусной расширяющейся траектории.
Это не оригинальная схема Клема, а вариант конструктивного исполнения его идеи. На рис. 37 показана еще одна принципиальная схема данной конструкции. Конусный ротор помещается в конусный корпус, и имеет вырезанные в нем спиральные каналы. Эти спиральные дорожки проходят вдоль конуса и заканчиваются на его основании в виде сопел (форсунок). Рекомендации теоретиков и практиков по созданию аналогичных конструкций заключаются в том, что надо «дать жидкости возможность укоряться», поскольку на нее действует центробежная сила.