Ньютон
Шрифт:
Видимо, претензии Гука сильно задели Ньютона, 20 июня он приводит и новые аргументы.
Ньютон — Галлею
20 июня 1686 года
«…Борелли кое-что сделал в этой области и скромно об этом написал. Он же (Гук. — В.К.) ничего не сделал, но написал так, будто бы всё знал и достаточно откровенно намекал: всё, что осталось сделать после него — это только провести нудные вычисления и наблюдения, и тем избавил себя от этих трудов по причине занятости другими делами; а он должен был бы исключить себя из рассмотрения этих вопросов по причине его неспособности… Математики, которые выявили всё это, решили проблему и сделали все другие необходимые дела, должны считать себя, выходит, лишь бесстрастными вычислителями
Если уж искать предтеч, считает Ньютон, нужно обратиться к самым истокам, к Гюйгенсу. Гюйгенс показал, как находить силу во всех случаях кругового движения. И, таким образом, честь исполнения принадлежит ему. Неточной догадке Гука, утверждает Ньютон, не поверил бы ни один здравомыслящий философ. А без доказательств подобные догадки не имеют значения.
Не довольствуясь этим, Ньютон хочет решить вопрос радикально:
«…Третью книгу я намерен теперь устранить. Философия — это такая наглая и сутяжная леди, что иметь с ней дело — всё равно что быть вовлечённым в судебную тяжбу… Я знал это раньше, знаю и сейчас и появлюсь рядом с ней не ранее, как она сама подаст мне знак… Две первые книги без третьей, таким образом, не будут называться «Математические начала натуральной философии», и посему я поначалу изменил название на «De motu corporum» («О движении тел»), в двух книгах, но, поразмыслив, оставил прежнее название. Это поможет продаже книг — я не должен ухудшать её: книга принадлежит Вам».
Но не мог он этого сделать — отказаться от третьей части, хотя и пытался отвлечь себя чем-нибудь другим: посадкой яблонь, изготовлением сидра и иными подобными делами. Не мог отказаться и от названия «Philosophiae naturalis principia mathematica» — «Математические начала натуральной философии», которое, конечно, было весьма многозначительным, ибо явно вызывало на поединок труд самого Декарта «Philosophiae principia» («Начала философии»). Он не мог сделать этого ещё и потому, что целиком зависел в издании этой книги от Галлея, не мог подвести его. Слово «математические» должно было остаться, потому что впервые математика столь широко применялась к «натуральной философии», то есть к физике. Кроме того, слово «математические» должно было притупить бдительность церковных цензоров. Математика почиталась занятием неопасным.
Галлей послал Ньютону ответное письмо, где пытался всячески скрасить сложившуюся ситуацию, уговаривал Ньютона не сердиться на Гука. Он опять описывал события памятного дня 28 апреля и пытался изложить всё самым почётным для Ньютона образом.
Галлей — Ньютону
29 июня 1686 года
«…Я всем сердцем жалею, что там, где всё человечество должно выразить свою признательность по отношению к Вам, Вы встретились с чем-то, что приносит Вам беспокойство или какое-то разочарование, заставляющие Вас думать о предъявлении претензий к леди, чьими знаками внимания Вы по праву можете гордиться. И это не она, а Ваши соперники, завидующие Вашему счастью, пытаются разрушить Вашу спокойную радость, которая… я надеюсь, будет причиной перемены Вашего прежнего решения об отмене Вашей третьей книги… Джентльмены из Общества, которым я сообщил это, очень обеспокоились. Уверен, что Общество весьма польщено той честью, которую Вы оказали посвящением ему столь ценного трактата».
Следующее письмо Галлея содержит объяснение того, как он сам пришёл к закону обратных квадратов. В конце письма он умоляет Ньютона «не возводить обиды до такой степени, чтобы лишить нас Вашей третьей книги, где содержится применение Вашей математической доктрины к теории комет и некоторым интересным экспериментам».
Галлей — Ньютону
29 июня 1686 года
(Отвечает на просьбу Ньютона — спросить у Рена, от кого он впервые услышал об обратной квадратичной зависимости. — В.К.)
«…Он ответил, что много лет назад сам размышлял о выведении законов планетных движений посредством совместного рассмотрения расстояния от Солнца и имеющегося
Текст письма свидетельствует: уже Галлей использовал пропорцию Кеплера. Из письма следует также, что Галлей использовал и результаты Гюйгенса относительно центробежной силы; отсюда он и вывел, что при равномерном круговом движении сила должна зависеть от квадрата расстояния. Фраза Гука о том, что с помощью этого принципа можно объяснить все законы небесных движений, скорее всего относится к законам Кеплера. Рен, видимо, назначил премию за математическое доказательство того, что под действием силы, снижающейся пропорционально квадрату расстояния, могут возникать движения и по эллиптической орбите.
Ответ был известен, он, как говорят, носился в воздухе. Но никто не мог представить доказательств.
В ответном письме Ньютон, казалось, пошёл на уступки. Он признал кое-какие заслуги Гука. В частности, Ньютон признал, что в письмах Гука содержалось нечто такое, чего он ранее не знал, — отклонение падающих тел к юго-востоку. Но это, пожалуй, было единственное, что он признавал.
Ньютон — Галлею
14 июля 1686 года
«…Я придумал сейчас, как разрешить этот спор… считаю, что это будет сделано посредством расширения прилагаемого мною Поучения к четвёртому предположению…»
Новое «Поучение» начинается с параграфа, точно совпадающего с первоначальным, однако имеет знаменательное добавление. После слов «случается в небесных телах» была сделана в скобках приписка: «…как наши соотечественники сэр Кристофер Рен, доктор Галлей и доктор Гук неоднократно наблюдали». Интересно, что сначала, в одном из черновиков имя Гука было поставлено перед именем Галлея. В окончательном черновике Гук шёл после всех. Галлей самовольно поменял в типографии порядок имён и поставил Гука впереди себя, надеясь несколько смягчить грядущий удар.
В письме Галлею Ньютон уточнил, что главная, на его взгляд, заслуга Гука в том, что он раздразнил его, Ньютона, воображение и заставил заниматься предметами, которые его ранее не увлекали.
Ньютон — Галлею
27 июля 1686 года
«…Хотя его исправления моей спирали и привели к тому, что я нашёл теорему, посредством которой я после этого изучал эллипсы, я не обязан ему никакой идеей, связанной с этим, а лишь тем отвлечением от занятий, которые он мне предоставил, и возможностью подумать об этих вещах…»