О чем рассказали «говорящие» обезьяны: Способны ли высшие животные оперировать символами?
Шрифт:
• каждому пересчитываемому элементу должен соответствовать индивидуальный символ (принцип «соответствия один к одному»);
• символы должны в стабильном порядке соответствовать пересчитываемым элементам (принцип «ординальности» – использование цифр как порядковых числительных);
• символ, соответствующий последнему элементу, должен описывать общее число элементов в множестве (принцип «кардинальности» – использование цифр как количественных числительных).
Чтобы определить, способны ли животные к символизации и удовлетворяет ли их поведение при оценке множеств указанным критериям, необходимо выяснить, могут ли они:
• устанавливать тождество между исходно индифферентными для них знаками (например, арабскими цифрами) и обобщенной информацией о числе элементов множеств разной природы;
• оперировать усвоенными
• использовать усвоенные символы для нумерации (пересчета) элементов множеств и выполнять число действий в соответствии с предъявленной цифрой.
Оценка способности к «счету» у приматов
Первые исследования способности к символизации были выполнены на человекообразных обезьянах. Японские приматологи под руководством Т. Матцузавы (Институт изучения приматов при университете г. Киото) уже около трех десятилетий исследуют когнитивные способности шимпанзе, включая символизацию и формирование понятия о числе (Matsuzawa 1985; Matsuzawa et al. 1986; Tomonaga, Matsuzawa 2000; Biro, Matsuzawa 2001).
Самку шимпанзе по кличке Аи обучили значениям нескольких десятков иероглифов кандзи (одна из форм японской письменности) для обозначения цвета, числа элементов в множестве и др. Эксперименты проводили с помощью компьютеризованной установки – стимулами служили изображения, появляющиеся на экране чувствительного к прикосновению монитора. Кроме того, без специального обучения Аи усвоила значения трех десятков слов устной речи.
Способность Аи к «счету» исследовали методом выбора по образцу. В качестве образца предъявляли наборы различных предметов, а для выбора – арабские цифры. Аи успешно установила эквивалентность между арабскими цифрами от 1 до 9 и соответствующими множествами. В тесте на перенос с новыми вариантами множеств того же диапазона она выбирала соответствующие им цифры («маркировала» множества с помощью символов – «продуктивное»[35] использование символов). Можно было предположить, что ее обучение ограничивалось образованием условной связи между цифрой и конкретным паттерном расположения элементов в множестве, а также простым запоминанием всех использованных комбинаций. Однако в более поздних работах (Murofushi 1997; Biro, Matsuzawa 2001) было доказано, что дело этим не ограничивается и Аи действительно связала цифры с понятием «число», применяя их к любому множеству данной величины независимо от второстепенных признаков. Она выбирала нужную цифру от 1 до 9 для маркировки разнообразных новых множеств («рецептивное» использование символов), абстрагируясь от паттернов расположения составляющих их элементов, а также от их размера, цвета и формы. Таким образом, эти два эксперимента продемонстрировали способность шимпанзе успешно использовать принцип кардинальности.
Кроме того, Аи усвоила и принцип ординальности: когда ей предъявляли несколько цифр, разбросанных в случайном порядке по экрану монитора, она прикасалась к ним по очереди в порядке возрастания, т. е. как бы в соответствии с имеющимся у нее мысленным упорядоченным рядом (Tomonaga et al. 1993; Tomonaga, Matsuzawa 2000; Biro, Matsuzawa 2001).
Важный вклад в решение вопроса о способности животных к использованию символов для характеристики множеств внесли работы американской исследовательницы Сары Бойзен и ее сотрудников (Boysen, Berntson 1989; 1995; Boysen 1993). Благодаря приемам, специально акцентирующим внимание животного на признаке числа, и постепенному наращиванию сложности предъявляемых задач им удалось обучить шимпанзе Шибу практически всем элементам «истинного счета».
Сначала шимпанзе обучали класть одну и только одну конфету в каждый из шести отсеков специального подноса. Смыслом этой процедуры была демонстрация соответствия «один к одному» между числом отсеков и числом конфет. На следующем этапе в ответ на предъявление подноса с одной, двумя или тремя конфетами шимпанзе должны были выбрать одну из трех карточек с изображениями такого же числа кружков. Авторы особо подчеркивали значение того, что конфеты на поднос помещали по очереди, при этом экспериментатор их вслух пересчитывал. Тем самым обезьяне демонстрировали первый и второй принципы Гельман и Галлистеля – соответствие «один к одному» и упорядоченность (ординальность). Затем карточки с изображениями точек стали постепенно (сначала одну, потом две, а потом и все три) заменять
Когда Шиба стала уверенно выбирать цифру, соответствующую числу конфет на подносе («продуктивное» использование символов), обучение продолжили с помощью компьютера. Обезьяне показывали на мониторе одну из цифр, а она должна была выбрать карточку с изображением соответствующего числа точек (рецептивное использование символов) (рис. 7а, б).
По той же методике Шиба освоила еще два символа: цифры 0 и 4, а впоследствии также 5, 6 и 7. Интересно, что, осваивая новые множества, она сначала по очереди прикасалась к каждой из конфет («пересчитывала» их) и только после этого выбирала соответствующую цифру. Дополнительные опыты свидетельствуют, что это не было простым подражанием действиям экспериментатора, – число ошибочных ответов коррелировало с числом ошибочных касаний пальцем.
Для проверки способности Шибы оперировать усвоенными символами провели следующие два теста. В лаборатории по двум из трех «тайников» раскладывали апельсины таким образом, чтобы их сумма не превышала 4 и их нельзя было видеть одновременно. Шиба обходила все три «тайника» и по очереди видела (но не могла достать) находящиеся в них апельсины. Затем обезьяна должна была подойти к «рабочей площадке», откуда не были видны апельсины, и выбрать из разложенных там цифр ту, которая соответствовала общему числу плодов. Уже во второй серии экспериментов (25 проб в каждой) шимпанзе выбирала правильную цифру более чем в 80 % случаев.
Во втором тесте (его назвали тестом на «счет символов») апельсины заменили карточками с цифрами, которые также помещали в любые два из трех «тайников» (тест на «сложение символов»). Использовали следующие комбинации цифр: 1 и 0, 1 и 1, 1 и 2, 1 и 3, 2 и 0, 2 и 2. Как и на предыдущем этапе, Шиба должна была обойти «тайники» и затем найти карточку с цифрой, соответствующей сумме. В первой же серии она выбрала правильную цифру в достоверном большинстве случаев (75 %). Полученные результаты стали убедительным свидетельством способности шимпанзе усваивать символы, оперировать ими в отрыве от реальных множеств и выполнять операцию, аналогичную сложению, т. е. поведение обезьяны удовлетворяло двум критериям «истинного счета».
Рис. 7a
Рис. 7б
Рис. 7. Изучение способности к символизации у приматов. А – «Рецептивность» при использовании символов: шимпанзе Шиба выбирает множество, соответствующее предъявленной ей цифре; Б – «Продуктивность» при использовании символов: Шиба пальцем пересчитывает яблоки, а затем выбирает соответствующую цифру (по Boysen, Berntson 1989)
Демонстрация способности шимпанзе к использованию принципа ординальности была целью экспериментов Д. Рамбо (Rumbaugh et al. 1989; Rumbaugh, Washburn 1993): животных старались побудить нумеровать объекты с помощью символов или производить определенное число действий в соответствии со значениями цифр. В экспериментах участвовали шимпанзе, ранее обучавшиеся языку-посреднику йеркиш (Лана, Шерман и Остин; см. ниже).
Прежде всего, обезьян научили с помощью джойстика перемещать курсор по экрану монитора и помещать его на арабскую цифру, которая появлялась на соответствующем по счету месте в одной из прямоугольных рамок, расположенных вдоль верхнего края экрана. В следующей задаче вдоль нижнего края экрана дополнительно появлялись изображения прямоугольных рамок с одной точкой внутри каждой. Шимпанзе нужно было передвинуть столько рамок, чтобы их число соответствовало значению арабской цифры-образца. После передвижения последней рамки обезьяна должна была вернуть курсор на цифру-образец, сигнализируя тем самым о выполнении задачи. В процессе обучения, как только обезьяна передвигала очередную рамку нижнего ряда, в верхнем ряду рамок появлялась соответствующая цифра (демонстрация «соответствия один к одному»). В тесте такой «обратной связи» не было. Когда обезьяна помещала курсор на очередную рамку, та исчезала, и при этом раздавался звуковой сигнал. Для успешного выполнения задания было необходимо помнить, сколько рамок уже исчезло. Шимпанзе успешно справлялись с этой задачей. В данной ситуации они продемонстрировали владение обоими принципами – и ординальности, и кардинальности, – и потому их поведение расценили как «начальный счет» (entry-level counting; Rumbaugh, Washburn 1993).