Чтение онлайн

на главную - закладки

Жанры

Обработка больших данных
Шрифт:

В больших кластерах не только отдельные узлы, но и целые подсети могут выходить из строя. MapReduce учитывает такие сценарии, предоставляя механизмы для обработки более сложных отказов. Например, система может обнаружить, что группа узлов, связанная с определенной сетью, стала недоступной, и она перенаправляет задачи на узлы в других сетях или подсетях.

В процессе выполнения задач MapReduce постоянно мониторит состояние выполнения, что позволяет оперативно реагировать на сбои. Веб-интерфейс и лог-файлы системы дают администраторам кластера возможность видеть статус каждой

задачи, включая информацию о том, сколько задач были перезапущены из-за сбоев и на каких узлах они были выполнены успешно. Это не только помогает в управлении текущими задачами, но и предоставляет важные данные для анализа производительности и надежности кластера.

Благодаря этим встроенным механизмам отказоустойчивости, MapReduce гарантирует завершение обработки данных, даже если отдельные узлы кластера выходят из строя. Автоматическое обнаружение сбоев, перезапуск задач на других узлах, репликация данных и мониторинг выполнения задач создают высоконадежную и устойчивую к сбоям систему. Эти особенности делают MapReduce идеальным инструментом для работы с большими данными в распределенной среде, где отказоустойчивость является ключевым требованием.

5. Архитектура «мастер-слейв»:

MapReduce, как и многие распределенные системы, использует архитектуру "мастер-слейв" для управления распределением и выполнением задач в кластере. Эта архитектура включает в себя центральный управляющий узел, называемый JobTracker (в ранних версиях Hadoop), и множество подчиненных узлов, называемых TaskTracker. В современной реализации Hadoop JobTracker заменен на ResourceManager и ApplicationMaster в рамках системы управления ресурсами YARN (Yet Another Resource Negotiator), но концепция остается аналогичной.

JobTracker является центральным элементом в архитектуре MapReduce. Он выполняет несколько ключевых функций:

1. Распределение задач: Когда пользователь отправляет MapReduce-задание, JobTracker отвечает за разделение его на множество более мелких задач Map и Reduce. Эти задачи затем распределяются между доступными узлами-слейвами (TaskTracker), чтобы оптимально использовать ресурсы кластера.

2. Координация выполнения: JobTracker следит за выполнением всех задач, входящих в задание. Он отслеживает статус каждой задачи, получая регулярные отчеты от TaskTracker'ов. Если какая-то из задач не удается выполнить, например, из-за сбоя узла, JobTracker автоматически переназначает задачу другому TaskTracker'у, обеспечивая завершение работы.

3. Управление ресурсами: JobTracker управляет распределением ресурсов кластера, чтобы убедиться, что задачи выполняются эффективно и без конфликтов. Он учитывает загрузку узлов, их доступность и другие параметры, чтобы максимально увеличить производительность кластера.

4. Отчетность и мониторинг: JobTracker ведет учет выполнения заданий, предоставляя информацию о статусе задач, времени выполнения и любых проблемах, которые возникают в процессе. Эти данные могут использоваться для анализа производительности и дальнейшей оптимизации работы системы.

TaskTracker – это узел-слейв, который выполняет задачи, назначенные ему JobTracker'ом. В каждом узле кластера

работает свой TaskTracker, и он выполняет следующие функции:

1. Выполнение задач: TaskTracker получает от JobTracker задачи Map или Reduce и выполняет их на своем узле. Каждая задача обрабатывается отдельно, и TaskTracker может параллельно выполнять несколько задач, если у узла достаточно ресурсов.

2. Отчет о состоянии: TaskTracker регулярно отправляет отчеты о состоянии выполнения задач обратно JobTracker'у. Эти отчеты включают информацию о прогрессе выполнения задач, использовании ресурсов и любых возникших ошибках. Это позволяет JobTracker оперативно реагировать на любые проблемы и переназначать задачи, если это необходимо.

3. Локальная обработка данных: TaskTracker пытается выполнить задачи Map на данных, которые физически находятся на том же узле или поблизости, что минимизирует сетевой трафик и увеличивает эффективность обработки данных. Это достигается за счет интеграции с HDFS, где данные распределяются между узлами кластера.

Архитектура "мастер-слейв" в MapReduce также включает механизмы обработки сбоев, которые особенно важны для больших кластеров:

1. Перезапуск задач: Если TaskTracker не может завершить задачу из-за сбоя узла, JobTracker переназначает эту задачу другому TaskTracker'у. Это гарантирует, что задание будет выполнено, даже если часть узлов кластера выходит из строя.

2. Замена TaskTracker: В случае сбоя целого узла, включая его TaskTracker, JobTracker обнаруживает, что TaskTracker перестал отправлять отчеты о состоянии, и перестраивает распределение задач таким образом, чтобы другие узлы взяли на себя выполнение оставшихся задач.

3. Функция «сброс задач»: Если задача слишком долго остается в состоянии выполнения или возникает подозрение на сбой, JobTracker может принять решение о "сбросе" задачи и назначении ее новому TaskTracker'у для выполнения. Это предотвращает зависание задания и ускоряет его завершение.

Архитектура "мастер-слейв" в MapReduce с использованием JobTracker и TaskTracker обеспечивает централизованное управление заданиями и эффективное распределение задач по узлам кластера. JobTracker координирует все аспекты выполнения задания, включая распределение задач, мониторинг выполнения и управление сбоями. TaskTracker, в свою очередь, выполняет задачи и регулярно отчитывается о своем состоянии. Этот подход обеспечивает высокую производительность, устойчивость к сбоям и эффективное использование ресурсов кластера, что делает MapReduce мощной и надежной системой для обработки больших данных.

Рассмотрим пример использования модели MapReduce для анализа логов веб-сервера. Допустим, у крупного интернет-магазина ежедневно накапливаются гигабайты логов, и задача состоит в том, чтобы подсчитать, сколько раз каждая страница была посещена за день. Этот пример идеально подходит для MapReduce, так как данные объемны, но легко параллелятся.

1. Подготовка данных

Предположим, что логи веб-сервера содержат строки, каждая из которых представляет собой запись о посещении определенной страницы. Пример строки может выглядеть так:

Поделиться:
Популярные книги

Ненужная дочь

Брай Марьяна
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Ненужная дочь

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Товарищ "Чума" 3

lanpirot
3. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 3

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Боярышня Дуняша 2

Меллер Юлия Викторовна
2. Боярышня
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Боярышня Дуняша 2

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Измена. Право на любовь

Арская Арина
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на любовь

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель