Чтение онлайн

на главную - закладки

Жанры

Обработка больших данных
Шрифт:
Экосистема Hadoop

В экосистеме Hadoop существует множество пакетов и инструментов, которые дополняют и расширяют возможности базовых компонентов HDFS и MapReduce. Вот краткий обзор наиболее популярных инструментов: Hive, Pig, HBase, Sqoop, и Flume.

Hive

Hive представляет

собой систему хранения и обработки данных, которая предоставляет интерфейс SQL-подобного языка для взаимодействия с данными, хранящимися в HDFS. Она создана для того, чтобы упростить работу с данными для пользователей, которые привыкли работать с реляционными базами данных. Hive позволяет выполнять запросы на языке HiveQL (HQL), который является расширением SQL.

Hive преобразует запросы HQL в MapReduce задания, которые затем выполняются на кластере Hadoop. Это делает Hive особенно удобным для аналитиков данных и разработчиков, которые могут использовать знакомые SQL-подобные конструкции для обработки больших объемов данных без необходимости вручную писать MapReduce коды. Hive также поддерживает пользовательские функции (UDFs), которые позволяют добавлять собственные функции для обработки данных.

Пример использования Hive

1. Подготовка данных

Предположим, у нас есть лог-файлы веб-сервера, которые мы хотим анализировать. Эти файлы хранятся в HDFS в виде текстовых файлов. Для начала создадим таблицу в Hive, которая будет представлять эти данные.

```sql

CREATE EXTERNAL TABLE web_logs (

ip STRING,

timestamp STRING,

request STRING,

status INT,

size INT

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE

LOCATION '/user/hadoop/web_logs';

```

Пояснение:

– `CREATE EXTERNAL TABLE` создает таблицу в Hive, но не создает физические файлы в HDFS – данные остаются в указанном расположении.

– `ROW FORMAT DELIMITED` указывает, что строки разделены определенным символом.

– `FIELDS TERMINATED BY '\t'` указывает, что поля в данных разделены табуляцией.

– `STORED AS TEXTFILE` указывает формат хранения данных (текстовый

файл).

– `LOCATION '/user/hadoop/web_logs'` указывает на директорию в HDFS, где хранятся данные.

2. Выполнение запросов

Теперь, когда таблица создана, мы можем выполнять запросы для анализа данных. Например, чтобы получить количество запросов по статусам HTTP:

```sql

SELECT status, COUNT(*) AS count

FROM web_logs

GROUP BY status;

```

Пояснение:

– `SELECT status, COUNT(*) AS count` выбирает статус HTTP и количество запросов с этим статусом.

– `FROM web_logs` указывает на таблицу, с которой мы работаем.

– `GROUP BY status` группирует результаты по статусу HTTP, что позволяет подсчитать количество запросов для каждого статуса.

3. Использование пользовательских функций (UDF)

Если стандартных функций Hive недостаточно, можно использовать пользовательские функции. Например, предположим, что мы хотим подсчитать количество слов в запросе:

```java

// Java код для UDF

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.io.Text;

public class WordCountUDF extends UDF {

public int evaluate(Text text) {

if (text == null) return 0;

String[] words = text.toString.split("\\s+");

return words.length;

}

}

```

Пояснение:

Этот код определяет пользовательскую функцию `WordCountUDF`, которая подсчитывает количество слов в строке.

– Функция принимает текстовый параметр и возвращает количество слов.

После компиляции и развертывания UDF в Hive, можно использовать ее в запросах:

```sql

ADD JAR /path/to/udf.jar;

CREATE TEMPORARY FUNCTION word_count AS 'com.example.WordCountUDF';

SELECT word_count(request) AS word_count

FROM web_logs;

```

Пояснение:

– `ADD JAR /path/to/udf.jar;` добавляет JAR-файл с вашей UDF в Hive.

– `CREATE TEMPORARY FUNCTION word_count AS 'com.example.WordCountUDF';` регистрирует вашу UDF в Hive.

Конец ознакомительного фрагмента.

Поделиться:
Популярные книги

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Дочь Хранителя

Шевченко Ирина
1. Легенды Сопределья
Фантастика:
фэнтези
9.09
рейтинг книги
Дочь Хранителя

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Английский язык с У. С. Моэмом. Театр

Франк Илья
Научно-образовательная:
языкознание
5.00
рейтинг книги
Английский язык с У. С. Моэмом. Театр

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14