Чтение онлайн

на главную - закладки

Жанры

Общественная организация человечества
Шрифт:

Итак, население всех обществ первого порядка до выборов выразится:

1. Нво1=Н.

Число всех обществ первого порядка равно:

2.Чво1=Н:Но1

Мы тут делим все население (Н) на численность населения первого общества.

Население же всех обществ второго порядка будет (см. 2):

3. Нво2 = В1Чво1– Н(В1о1),

т.е.

население всех обществ второго разряда равно половинному отбору (B1), умноженному на число обществ первого порядка. Такова же будет и численность совокупности членов советов всех обществ первого разряда.

Вообще полный (2В) отбор делится пополам. Одна часть идет на советы, другая – на составление следующих высших обществ. Обе половины чередуются своими ролями.

Также получим далее на основании предыдущих формул и обозначений:

4.Чво2во2о2=НВ1о2Но1.

5. Нво32Чво2=Н(В1В2о1Но2).

6. Чво3во3о2=НВ1В2о3Но1Но2.

Вообще:

7. Нвок=Н[В1В2В3…В(к-1)о1Но2Но3…Но(к-1)].

8. Чвок=[Н/Нок]х[В1В2В3…Вк-1о1Но2Но3…Но(к-1)].

Из 7 и 8 найдем:

8.1. Нвоквокок,

что впрочем и так ясно. Из 7 и 8 для последнего (п) общества получим:

9.Нвоп=Н[В1о1]х[В2о2]х[В3о3]…[Вкок]…[Вп-1о(п-1)] и

10. Чвоп=[Н/Ноп]х[В1о1]х[В2о2]…[Вкок]…[Вп-1о(п-1)]=1

Из двух последних формул, деля, найдем:

10.1. Нвопвопоп.

Значит, вместо 9 имеем:

10.2.

НвопопЧвопоп.

Полученное тождество служит только проверкой и указывает на ненужность формулы 10.

Если положить, что отбор во всех обществах разной высоты одинаков и равен (2В), а также приняв и численность населения каждого общества постоянной и равной (Но), то из 10 найдем:

11. Н[Вп-1оп]=1.

Отсюда:

12. Но=пvН х В(п-1/п)

Здесь определяется население одного общества (Но) в зависимости от полного населения Земли (Н), величины отбора (2В) и числа всех общественных разрядов (п) или числа последовательных выборов. Логарифмируя, из той же формулы 12, получим:

16. п=[L(H)-L(B)]/[L(Ho1)-L(B)].

Важнее всего определить число (п) разных обществ, так как чем больше их, тем больше выборов и тем последний отбор (высшего совета) должен оказаться совершеннее. Из формулы 16 видно, что число этих последовательных отборов лучших людей увеличивается с увеличением населения (Н) Земли и уменьшением населения отдельного общества (Но).

Так как (LH) гораздо больше (LB), то приблизительно:

16.1. п=L(H):{L(Ho)-L(B)}

Отсюда уже ясно, что (п) еще увеличивается с увеличением отбора (2В).

Следовательно, в отношении качества высшего совета (п) выгодно большое население (Н). Но откуда его взять, если людей так мало. Надо, значит, размножаться насколько позволяет солнечная энергия, падающая на Землю. Выгодно также, чтобы в отдельном обществе было как можно меньше членов. Это полезно и в отношении взаимного изучения и правильного выбора. Однако от малого числа членов неэкономно делать отбор, так как выборные отвлекаются (хоть немного) от производительного труда и явных плодов.

От каждого самого примитивного общества не может быть избрано меньше 12 человек. 6 пойдут на советы и столько же на составление следующих высших обществ. 6 членов совета делятся на 3 женщин для управления женщинами и 3 мужчин для управления мужчинами. Совет каждого пола будет состоять из 3 членов, между которыми один председатель. Для решения дел обоего пола будет соединенный совет из 6 членов: 3 мужчин и 3 женщин. Женский мир выбирает только женщин, мужской – только мужчин, в противном случае будут выбирать за половую привлекательность и может произойти ошибка. Со временем отличия полов сгладятся и выборы будут безразличны, по пока обаяние полов чересчур могущественно. Неразумно не принять этого в расчет.

Итак:

16.2. 2В=12; В=6.

Эти 6 и отвлекаются немного от физического труда. Остальные 6 поступают в общества и продолжают явно производительный труд, нисколько население не обременяя. Отвлеченные 6 человек составляют некоторый коэффициент (Кф) по отношению к населению всего общества (Но). Именно:

16.3. Кф=В:Но или В=НоКф.

Исключая (В) из 11, получим:

16.4. Но=НКфп-1 или
Поделиться:
Популярные книги

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Темный Лекарь 9

Токсик Саша
9. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 9

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Нищий

Щепетнов Евгений Владимирович
1. Нищий
Фантастика:
фэнтези
8.57
рейтинг книги
Нищий

Черт из табакерки

Донцова Дарья
1. Виола Тараканова. В мире преступных страстей
Детективы:
иронические детективы
8.37
рейтинг книги
Черт из табакерки

Вторая жизнь

Санфиров Александр
Фантастика:
боевая фантастика
альтернативная история
6.88
рейтинг книги
Вторая жизнь

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу