Объясняя мир. Истоки современной науки
Шрифт:
Путешествие морем из Афин в Александрию в эпоху эллинизма и во времена Рима занимало примерно то же время, какое требовалось пароходу в XX в., чтобы дойти из Ливерпуля в Нью-Йорк. Поэтому люди массово перемещались в обоих направлениях между Египтом и Грецией. К примеру, Стратон не остался в Египте насовсем – он вернулся в Афины, чтобы стать третьим главой Ликея.
Стратон был ученым-наблюдателем. Он сумел установить, что падающие тела движутся вниз с ускорением, наблюдая, как ведет себя струя воды, стекающей с крыши во время дождя, когда она разбивается на отдельные капли. Он заметил, что эти капли удаляются друг от друга по мере падения. Так происходит потому, что капля в нижней части струи падает дольше и в силу того, что ускоряется, проходит большее расстояние, чем непосредственно следующая за ней капля, которая в тот же момент времени падала не столь долго (см. техническое замечание 7). Также Стратон обратил внимание, что тело, падающее с небольшой высоты, лишь слегка ударяется о землю, тогда как оно же, упавшее со значительной высоты, бьется о землю гораздо сильнее, и это означает, что его скорость увеличивается за время падения {46} .
46
В английском
Вероятно, не случайно Александрия, как и другие центры древнегреческой натуральной философии – Милет и Афины, была и центром коммерции. Оживленный рынок привлекает выходцев из иных культур и вносит разнообразие в сельское хозяйство. Коммерческие связи Александрии простирались очень далеко: товары из Индии попадали морским путем в Средиземноморье, путешествуя на судах через Аравийское море, далее – на север вдоль Красного моря, потом караваном до Нила и затем вниз по реке до Александрии.
Однако в интеллектуальном климате Афин и Александрии были существенные различия. В частности, ученые из Музея обычно не занимались созданием всеобъемлющих теорий, так привлекавших греческих мыслителей от Фалеса до Аристотеля. Как отмечает Флорис Коэн, «афиняне мыслили о всеобщем, а александрийцы – о частном» {47} . Ученые из Александрии сосредоточились на изучении отдельных явлений, в чем они действительно могли добиться реальных успехов. Их тематика включала оптику, гидростатику и, прежде всего, астрономию – предмет второй части этой книги.
47
H. Floris Cohen, How Modern Science Came into the World (Amsterdam University Press, Amsterdam, 2010), p. 17.
То, что древнегреческие мыслители Эллинистической эры не пытались создать «теорию всего», вовсе не говорило об их ущербности. И тогда, и сейчас для развития науки крайне важно отличать, какие задачи созрели для изучения, а какие – еще нет. Например, на рубеже XIX–XX вв. некоторые ведущие физики того времени, такие как Хендрик Лоренц и Макс Абрахам, затратили массу усилий на то, чтобы понять структуру открытого незадолго до того электрона. Все было напрасно: никто не смог добиться лучшего понимания природы электрона до тех пор, пока два десятилетия спустя не была изобретена квантовая механика. Создание и развитие Специальной теории относительности Альбертом Эйнштейном стало возможно благодаря тому, что он решил не принимать во внимание, чем на самом деле являются электроны. А затем, в преклонном возрасте, Эйнштейн обратился к вопросу объединения известных природных взаимодействий и не достиг никакого успеха, поскольку в то время еще не было накоплено достаточно знаний для новой теории.
Другое важное отличие ученых эпохи эллинизма от ученых эпохи классицизма было в том, что, в отличие от своих предшественников, они с гораздо меньшим снобизмом относились к делению предмета науки на чистое знание как таковое и на знание, используемое в прикладных целях: в греческом языке – противопоставление понятий и (в латыни – scientia и ars). История свидетельствует, что многие философы рассматривали изобретателей примерно так же, как распорядитель увеселений Филострат в шекспировской пьесе «Сон в летнюю ночь», говоря об участниках афинской актерской труппы: «Здешний мелкий люд, мастеровые с жесткими руками, вовек не изощрявшие мозгов». Как физик, чья область интересов – исследование элементарных частиц и космология, не имеющая немедленного практического применения, я, разумеется, не собираюсь утверждать, что чистое знание – это что-то плохое, но проведение научных исследований на благо человека – это чудесный способ заставить ученых перестать витать в эмпиреях и вернуться к реальности {48} .
48
О новейших исследованиях взаимосвязи технологии с физикой см.: Bruce J. Hunt, Pursuing Power and Light: Technology and Physics from James Watt to Albert Einstein (Johns Hopkins University Press, Baltimore, Md., 2010).
Естественно, что люди были заинтересованы в усовершенствованиях техники еще с тех времен, как научились использовать огонь для приготовления пищи и делать инструменты, ударяя одним камнем по другому. Но устойчивый интеллектуальный снобизм таких мыслителей Классического периода, как Платон или Аристотель, прочно отгораживал их теоретические работы от реального применения.
И хотя этот предрассудок не исчез и при эллинизме, он перестал быть столь влиятельным, как раньше. Некоторые люди, даже не аристократического происхождения, в это время смогли прославиться, создав технические изобретения. Хорошим примером служит Ктезибий Александрийский, сын цирюльника, который в середине III в. до н. э. изобрел гидравлические насосы и водяные часы, измеряющие время более точно, чем их предшественники, за счет поддержания постоянного уровня жидкости в сосуде-измерителе, из которого вытекала вода. Ктезибий снискал такую известность, что его упоминал два столетия спустя римский автор Витрувий в своем трактате «Об архитектуре».
Важно то, что некоторые технические изобретения века эллинизма были созданы теми же учеными, которые занимались систематическими научными исследованиями,
49
Описание экспериментов Филона см.: G. I. Ibry-Massie and P. T. Keyser, Greek Science of the Hellenistic Era (Routledge, London, 2002), pp. 216–219.
Существовала важная тема для изучения, имеющая практическое применение, к которой древнегреческие ученые обращались снова и снова, даже в период владычества Рима: поведение лучей света. Интерес к ней возник еще в начале Эллинистической эры в работах Евклида.
О жизни Евклида известно мало. Можно предполагать, что он жил во времена правления Птолемея I и мог быть основоположником изучения математики в Александрийском музее. Наиболее известная его работа, «Начала», открывается набором геометрических определений, аксиом и постулатов и продолжается более или менее проработанными доказательствами различных теорем геометрии, начиная с простых и кончая сложными. Но кроме этой книги Евклид также написал «Оптику», посвященную законам перспективы, и ему также приписывается «Катоптрика» – книга о зеркальных отражениях, хотя современные историки не убеждены в его авторстве.
Стоит задуматься о том, что в зеркальных отражениях есть нечто особенное. Когда вы смотрите на отражение какого-нибудь небольшого предмета в плоском зеркале, вы видите его в одной определенной точке, а не «размазанным» по всему зеркалу. Но ведь существует много возможных способов нарисовать путь луча света от реального объекта к поверхности зеркала и затем к глазу наблюдателя {50} . Однако свет следует лишь по одному из таких возможных путей, и поэтому отражение можно видеть в той точке, где этот путь упирается в зеркало. Но чем определяется расположение этой точки на поверхности зеркала? В «Катоптрике» имеется описание фундаментального закона, который дает ответ на этот вопрос: угол, который падающий на плоское зеркало луч образует с его поверхностью, равен такому же углу для отраженного луча. Только один-единственный путь луча света удовлетворяет этому условию.
50
В древности обычно считалось, что люди видят предметы потому, что лучи света исходят из глаза и касаются видимого объекта, как если бы зрение ощупывало предмет. Далее я неявно предполагаю, что читатель разделяет современную точку зрения о том, что мы видим потому, что свет идет от видимого предмета к глазу наблюдателя. К счастью, при анализе отражения и преломления света нет разницы, в какую именно сторону движется луч.
Неизвестно, кто именно в эпоху эллинизма открыл этот принцип. Тем не менее мы знаем, что позднее, около 60 г., Герон Александрийский в своем труде под названием «Катоптрика» привел математическое доказательство равенства углов падения и отражения, основываясь на предположении, что путь светового луча от объекта к зеркалу, а затем к глазу наблюдателя есть кратчайший возможный путь (см. техническое замечание 8). В качестве обоснования того, почему эта закономерность наблюдается, Герон ограничивается лишь высказыванием: «Все согласны, что Природа ничего не делает зря и не напрягает силы без нужды» {51} . Возможно, что он находился под влиянием телеологии Аристотеля – идеи о том, что все происходящее служит некоему замыслу. Тем не менее Герон был прав; как мы увидим в главе 14, только в XVII в. Гюйгенс сумел вывести принцип следования света по кратчайшему пути (в действительности по пути, следование по которому занимает наименьшее время) из волновой природы света. Тот же Герон помимо фундаментальных исследований в оптике, позволивших ему создать теодолит – прибор для нужд практической геодезии, привел объяснение действию сифонов и занимался проектированием и созданием военных катапульт и примитивного парового двигателя.
51
Это цитата из греческого манускрипта 6 в. до н. э. в английском переводе: Ibry-Massie и Keyser, Greek Science of the Hellenistic Era.
Изучение оптики продолжалось в Александрии в середине II в н. э. великим астрономом Клавдием Птолемеем (не имевшим отношения к царской династии Птолемеев). Его книга «Оптика» известна в переводе на латынь с утерянного перевода на арабский язык с утраченного греческого оригинала (возможно, впрочем, промежуточным звеном был еще и исчезнувший перевод на древний сирийский язык). В этой книге Птолемей описывает измерения, подтверждающие правило равенства угла падения и отражения, ранее сформулированное Евклидом и Героном. Он также распространяет это же правило на отражения от кривых зеркал, типа тех, которые сейчас можно увидеть в парках аттракционов. Птолемей верно заключил, что отражение света от поверхности кривого зеркала происходит точно так же, как и отражение от зеркала плоского – при равенстве углов падения и отражения по отношению к нормали в точке отражения.