Объясняя мир. Истоки современной науки
Шрифт:
В заключительном томе «Оптики» Птолемей также описывал преломление света – явление, когда световые лучи изменяют направление при переходе из одной прозрачной среды в другую, например, из воздуха в воду. Он разметил диск отметками углов и наполовину погрузил в сосуд с водой. Наблюдая объект на дне сосуда сквозь трубку, укрепленную на краю диска, он смог замерить углы, которые исходный и преломленный лучи образуют с перпендикуляром к поверхности воды, с точностью, колебавшейся от долей градуса до нескольких градусов {52} . Как будет описано в главе 13, закон, раскрывающий соотношение этих углов, был выведен в XVII в. Ферма как простое расширение принципа, сформулированного Героном об отражении: преломление обусловлено тем, что путь луча света от объекта к глазу наблюдателя не кратчайший геометрически, а такой, который занимает наименьшее время прохождения пути для света. В случае отражения между кратчайшим и самым быстрым путем разницы нет, поскольку и падающий, и отраженный
52
См. Таб. V. 1, с. 233, в переводе «Оптики» Птолемея: A. Mark Smith, «Ptolemy's Theory of Visual Perception» // Transactions of the American Philosophical Society 86, Part 2 (1996).
Наиболее впечатляющих успехов из ученых-практиков эпохи эллинизма (и, не исключено, вообще всех эпох) добился Архимед. Он жил в III в. до н. э. в греческом городе Сиракузы на Сицилии, но есть сведения, что он как минимум однажды бывал в Александрии. Архимеду приписывают изобретение различных видов блоков и винтов, а также ряда военных механизмов, таких как «Лапа Архимеда», в основе которых лежал принцип рычага. С их помощью обороняющиеся в прибрежной крепости могли хватать и переворачивать вражеские корабли, стоящие на якоре у берега. Одним из его изобретений, широко использовавшимся в сельском хозяйстве на протяжении веков, стал так называемый винт Архимеда – приспособление для подъема воды из каналов для орошения полей. История о том, что Архимед при обороне Сиракуз использовал искривленные зеркала, чтобы сфокусировать солнечные лучи на римских кораблях и поджечь их, наверняка легенда, но она свидетельствует о том, что он приобрел репутацию волшебника в области техники.
В своем труде «О равновесии плоских фигур» Архимед вывел правило работы рычажных весов: стержень с грузами на обоих концах находится в равновесии тогда, когда расстояния между концами и точкой опоры стержня обратно пропорциональны весам этих грузов. К примеру, если на один конец стержня положить гирю в пять килограмм, а на другой – в один килограмм, то равновесие получится тогда, когда расстояние от килограммовой гири до точки опоры будет в пять раз больше, чем от точки опоры до пятикилограммовой гири.
Самое великой научное открытие Архимеда в области физики содержится в его книге «О плавающих телах». Архимед доказывал, что если какая-то часть жидкости окажется сдавлена в вертикальном направлении сильнее другой части весом самой жидкости или плавающими или погруженными в нее телами, то жидкость станет течь, пока все ее части не будут сдавлены одинаковым весом. Он формулировал это так:
«Предположим, что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим» {53} .
53
Архимед. Сочинения. – M, 1962. С. 328.
Отсюда Архимед заключил, что плавающее тело погружается в жидкость до уровня, на котором его собственный вес уравнивается весом вытесненной им жидкости. (Именно поэтому, говоря о весе судна или корабля, используют термин «водоизмещение».) Кроме того, твердое тело, слишком тяжелое, чтобы плавать, погруженное в жидкость, будучи подвешенным к рычагу весов на веревке, «…будет легче своего истинного веса на величину веса вытесненной жидкости» (см. техническое замечание 9). Отношение истинного веса тела к значению уменьшения его веса в погруженном в воду состоянии называется относительной плотностью тела, то есть отношением веса тела к весу воды того же объема. У каждого материала есть свое характерное значение относительной плотности: для золота оно равняется 19,32, для свинца – 11,34 и т. д. Этот метод, выведенный из систематического изучения статики жидкостей, позволил Архимеду выяснить, была ли царская корона изготовлена из чистого золота или сплава золота с более дешевыми металлами. Не установлено, применял ли сам Архимед свое открытие на практике, но и столетия спустя этот метод оставался надежным способом выяснения состава материалов.
Еще более потрясающих успехов Архимед добился в математике. Используя технику, предвосхитившую интегральный анализ, он смог вычислить площади и объемы различных плоских фигур и пространственных тел. Например, площадь круга равна половине длины соответствующей окружности, помноженной на радиус (см. техническое замечание 10). Используя методы геометрии, он показал, что соотношение, выражаемое числом, которое мы (но не Архимед) называем «пи», то есть отношение длины окружности к ее диаметру, находится
Существует рассказ о смерти Архимеда, переданный древнеримским историком Титом Ливием. Архимед погиб в 212 г. до н. э. во время разграбления Сиракуз римскими воинами под командованием Марка Клавдия Марцелла (до этих событий власть в Сиракузах была захвачена сторонниками Карфагена во время Второй Пунической войны). Когда римляне ворвались в Сиракузы, Архимеда убил солдат в тот момент, когда он работал над решением очередной геометрической задачи.
Помимо несравненного Архимеда к величайшим математикам Эллинистической эпохи относится его более поздний современник Аполлоний Пергский. Аполлоний родился в 262 г. до н. э. в Перге, городе на юго-восточном побережье Малой Азии, который в тот момент находился под властью набиравшего силу Пергамского царства. Но он путешествовал в Александрию во время правления Птолемея III и Птолемея IV, то есть в период с 247 по 203 г. до н. э. Выдающаяся работа Аполлония посвящена коническим сечениям – эллипсу, параболе и гиперболе. Это кривые, которые получаются при рассечении конуса плоскостью под различными углами. Намного позднее теория конических сечений оказалась принципиально важной для Кеплера и Ньютона, но применения в физике античного мира она не нашла.
Несмотря на эти блестящие прозрения в области геометрии, в древнегреческой науке практически отсутствовали математические методы, являющиеся неотъемлемой частью современной физики. Греки не умели писать и преобразовывать алгебраические формулы. Выражения наподобие E = mc^2 и F = ma – суть современной физики. (В своем чисто математическом труде Диофант Александрийский, живший и работавший в Александрии в середине III в., использовал формулы, но символы в его уравнениях обозначали только целые или рациональные числа, а в используемых сейчас физиками формулах это не так.) Даже когда нужно описать пространственные свойства явления, современный физик предпочитает выводить геометрические соотношения алгебраическим путем, используя приемы аналитической геометрии, разработанные в XVII в. Рене Декартом и другими (об этом будет рассказано в главе 13). Вероятно, из-за престижа, заработанного успехами древнегреческих математиков, геометрический стиль доказательств превалировал вплоть до научной революции XVII в. Когда Галилео Галилей в 1623 г. в своей книге «Пробирных дел мастер» {54} воздает хвалу математике, в первую очередь он говорит о геометрии: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту». Надо заметить, что Галилей несколько отстал от времени, превознося геометрию над алгеброй. В своих собственных работах он уже использовал алгебру, но доля геометрии в них была больше, чем у некоторых его современников, и намного больше, чем можно ожидать от статьи в физическом журнале нашего времени.
54
«Пробирных дел мастер» – полемика Галилея с его противниками-иезуитами, выраженная в форме письма к тайному камергеру Его Святейшества Вирджинио Чезарини. Как мы увидим в главе 11, в этом сочинении Галилео критиковал верную точку зрения Тихо Браге и иезуитов на то, что кометы находятся дальше от Земли, чем Луна (цитата в этом месте приводится по изданию: Галилео Галилей. Пробирных дел мастер / Пер. Ю. А. Данилова. – М.: Наука, 1987).
Сегодня есть место и для чистой науки – науки, в которой исследования проводятся безотносительно возможности практического применения. В древнем же мире, до того, как ученые поняли необходимость находить подтверждения своих теорий, практическое применение науки было важно потому, что сулило немалую выгоду ученому – в том случае, если теория оказывалась верна. Если бы Архимед при своих измерениях относительной плотности неверно заключил, что фальшивая корона сделана из чистого золота, его репутация в Сиракузах сильно бы пострадала.
Я не хочу преувеличивать то значение, которое технические изобретения, основанные на научных выводах, имели в эпоху эллинизма или Древнего Рима. Многие из устройств Ктезибия или Герона служили не более чем игрушками или театральной машинерией. Историки утверждают, что основанная на рабовладении экономика не нуждается в машинах, позволяющих экономить человеческий труд, и поэтому паровой двигатель Герона остался игрушкой. Военное и гражданское строительство и механизация были важны и в древности, и цари Александрии поддерживали изучение катапульт и других метательных приспособлений, вероятно, в рамках деятельности Музея. Но эти направления не так много взяли от науки того времени.