Очерки о Вселенной
Шрифт:
Именно такую возможность видеть Солнце «в свете длины волны водородной линии» дает нам прибор спектр огелиоскоп, изобретенный Хэйлом в США в 1930 г. Спектрогелиоскоп можно представить себе как спектроскоп, в котором весь спектр загорожен ширмой со щелью F2, через которую проходит свет только одной желаемой «темной» спектральной линии. За этой щелью находится окуляр, в который смотрит наблюдатель. Ему в глаза попадает свет только с длиной волны линии, выделенной щелью в ширме. На щель спектроскопа F1 падает изображение Солнца, даваемое телескопом и приводимое особым приспособлением в быстрое колебательное движение поперек щели. Картины быстро сменяющихся узких полосок, вырезаемых щелью спектроскопа из изображения Солнца, прикладываясь друг к другу, создают благодаря сохранению зрительного ощущения впечатление полной картины солнечного диска. Выделяя щелью ширмы разные линии в спектре, можно изучать
Рис. 122. Схема устройства спектрогелиографа, S - зеркало, О1 и О2 - объективы
С помощью прибора несколько иной конструкции, называемого спектрогелиографом и изобретенного раньше спектрогелиоскопа Деландром во Франции и тем же Хэйлом в США, подобные изображения Солнца можно фотографировать. Место глаза за щелью F2 там занимает движущаяся фотографическая пластинка Р. Такие фотографии называются спектрогелиограммами.
Теория показывает, что в темных линиях спектра, имеющих фактически некоторую ширину (а вовсе не бесконечно узких), центр линии образован поглощением газов, находящихся на большей высоте над поверхностью Солнца, чем газы, производящие поглощение света у краев линий. Так, выделяя очень узкой щелью разные части широких темных линий спектра Солнца, можно делать как бы срезы газовых слоев на разной высоте над фотосферой. Это - форменная анатомия внешних частей Солнца.
На спектрогелиограммах отчетливо проявляется не видимая в обвшный телескоп структура водородных масс в области пятен, о чем говорилось выше. Кроме того, пятна, как правило, бывают окружены яркими облаками горячего водорода и кальция (флоккулами). Флоккулы - это верхние части областей, занятых факелами. Это сопровождение областей похолодания на Солнце облаками горячих газов и вызывает то, что в годы максимума площади, занятой холодными пятнами, общее излучение Солнца, по-видимому, не понижается. Изучение спектрогелиограмм в связи с измерениями скоростей движения газов в разных местах Солнца показывает сложную циркуляцию газов в пятнах.
Рис. 123. Спектрогелиограмма Солнца в лучах водорода. Видны светлые флоккулы вокруг пятен и темные волокна. Внизу - обычная фотография Солнца
В нижней части пятна газ течет горизонтально от центра к периферии, а в более высоких слоях газы втекают сверху и сбоку внутрь пятна. Скорости достигают 10 км/сек. Однако пятна - спокойные образования, где конвекция подавлена сильным магнитным полем. Вокруг же пятна, в области флоккул, магнитное поле слабо и усиливает конвекцию ионизованного газа, называемого плазмой.
Солнечные газы охвачены непрерывной и мощной циркуляцией, законы которой для нас все еще гораздо «темнее», чем сами пятна.
Покрывала Солнца
Хотя фотосфера сама состоит из разреженных газов, она окружена атмосферой, еще более разреженной. Быть может, лучше сказать, что Солнце окружено несколькими покрывалами или оболочками, как бы вложенными одна в другую, так что солнечная атмосфера состоит из нескольких слоев. Атмосфера Солнца, более разреженная, чем фотосфера, почти совершенно прозрачна. Через нее, как через чистое стекло, мы видим фотосферу, а ее самое не видим, так же как стекло. Атмосфера Солнца нагрета до нескольких тысяч градусов и потому испускает
Сравнительно тонкий и разреженный слой атмосферы испускает не непрерывный спектр, а яркие линии, но их свет так слаб, что на светлом фоне неба вблизи края Солнца атмосфера не видна. Небо, освещенное Солнцем вблизи его края, ярче, чем атмосфера Солнца. Там же, где сквозь атмосферу видна фотосфера, свет последней поглощается по уже известным нам причинам в длинах волн, которые атмосфера испускает.
Поглощение атмосферой Солнца света в определенных длинах волн и производит появление в непрерывном спектре фотосферы темных, фраунгоферовых линий.
Но если атмосфера Солнца, проектирующаяся на его диск, прозрачна, а у его края невидима из-за яркого света неба, то можем ли мы узнать ее строение?
Рис. 124. Строение Солнца
Да, можем. Нам помогают в этом полные солнечные затмения. Когда Луна закрывает собой ослепительно яркий диск Солнца, то небо около Солнца, уже не освещаемое его прямыми лучами, темнеет. Тогда на потемневшем фоне неба из-за края Луны становится видна солнечная атмосфера, как яркое кольцо, окаймляющее темный круг Луны. Стоит выглянуть из-за Луны крошечному кусочку яркой фотосферы, как небо тотчас же опять светлеет, и атмосфера
Солнца снова делается невидимой. Атмосферу Солнца во время полного затмейия можно наблюдать всего лишь несколько минут, не больше. К тому же полные затмения Солнца, видимые в таких местностях, куда удобно снарядить экспедиции, бывают редко, так что в общей сложности таким путем солнечную атмосферу мы видели только около одного-двух часов, - и это с тех пор, как наука ею впервые заинтересовалась!
Солнечной атмосферой обычно называют слой газов, более разреженных, чем газы фотосферы, и убывающий в плотности с удалением от нее. Этот слой изменяющейся толщины во время полных затмений «высовывается» из-за темного края Луны либо в виде красноватого кольца, либо в виде серпа, в зависимости от обстоятельств и фазы затмения. За розовый цвет эту оболочку Солнца назвали хромосферой, а розовый цвет ей придает излучение водорода, которого в хромосфере всего больше. Спектр хромосферы состоит из ярких линий на темном фоне. Нижние ее части содержат все те газы, которые своим поглощением в более плотных наружных слоях Солнца вызывают появление в его спектре темных линий. Спектр нижних частей хромосферы, состоящий из множества ярких линий, виден очень недолго, обычно 2-3 секунды, и был назван спектром вспышки: его линии вспыхивают почти на мгновение. Линии разных химических элементов, составляющих хромосферу, наблюдаются до разной высоты. Выше всего наблюдаются линии ионизованного кальция - до 14 000 км, хотя он и тяжелее, чем водород.
Видимая граница хромосферы, различная для разных газов, кроме того, все время колеблется, так как она, по-видимому, не является неподвижным, спокойным напластованием слоев газа. Она образуется, скорее, за счет выбросов газов вверх в форме бесчисленных струй или фонтанов, вздымающихся из обращающего слоя или даже из фотосферы. Представьте себе бесчисленное множество мелких фонтанчиков, струи которых сливаются в сплошную водяную стену, - вот будет примерная модель хромосферы. Хромосфера, другими словами, является не статическим, а динамическим образованием.
Во всяком случае, наличие мощных вертикальных движений газа в хромосфере и из нее и даже взрыво-подобные выбросы газа наблюдаются нами непрестанно.
Высочайшие в мире фонтаны
Во время полных затмений Солнца даже невооруженным глазом видны выходящие из атмосферы гигантские фонтаны раскаленного газа, называемые протуберанцами. Впервые в истории такой протуберанец был отмечен в Древней Руси в 1185 г., но физическая природа протуберанцев была выяснена лишь многими веками позднее. Выброс газов происходит со скоростями, доходящими до нескольких сотен километров в секунду, но, как ни огромны эти скорости, они, как правило, недостаточны для отрыва протуберанцев от Солнца. На солнечной поверхности критическая скорость, при которой тело может уже преодолеть солнечное тяготение и улететь в бесконечность, составляет 617 км/сек. Газы протуберанцев, быстро вздымающиеся вверх, растягиваются в обширные облака, и рассеиваясь, снова оседают вниз. Высота выброса протуберанцев колоссальна. Например, в 1928 г. наблюдали протуберанец, достигший высоты 900 000 км, т. е. 1,3 солнечного радиуса. Это в 2 1/2 раза больше расстояния от Луны до Земли. В 1946 г. наблюдался протуберанец еще вдвое более высокий. При огромной скорости извержения изменения в протуберанцах происходят очень быстро, буквально на наших глазах.