Очерки о Вселенной
Шрифт:
В нашем распоряжении есть еще спектральный анализ, позволяющий определить, в каком участке неба звезды в среднем приближаются к нам с наибольшей скоростью к в каком удаляются. Эти участки на небе, очевидно, должны располагаться прямо друг против друга. Из такого анализа лучевых скоростей звезд можно получить скорость и направление движения Солнечной системы, а из анализа собственных движений - только ее направление.
Изучая эти средние систематические движения звезд, являющиеся отражением движения всей Солнечной системы, мы приходим к заключению, что она со скоростью 20 км/сек несется в направлении созвездий Лиры и Геркулеса (Точнее говоря, это направление
Скорость Солнечной системы в этом движении того же порядка, что и собственные скорости звезд. Нечего опасаться, что, летя к созвездию Лиры, мы на него налетим и разобьем его в куски. Скорее можно было бы опасаться, что пуля, пущенная вверх, в «воздушный флот», разобьет его. Созвездие Лиры - лишь направление, по которому видно множество звезд. Пространство между ними так же просторно, как и пространство между звездами, окружающими Солнце сейчас. Звезду от звезды отделяют световые годы. Если у вас есть охота, попробуйте подсчитать, через сколько лет мы приблизимся вдвое к яркой звезде Веге (пренебрегая ее движением), если до нее 25 световых лет, а наша скорость 20 км/сек.
Изучение звездных движений развивается, как говорят, методом последовательных приближений. Поясним это применительно к изучению движений звезд. Сначала мы считаем движения звезд хаотичными и выявляем движение Солнечной системы. Затем учитываем его влияние на видимые движения звезд и после этого выявляем систематические движения групп звезд. Узнав их, мы вводим поправку в наше первоначальное предположение о хаотичности звездных движений и снова, уже правильнее, определяем движение Солнца и опять повторяем свои дальнейшие исследования. Так, постепенно удается разобраться в кажущемся хаосе многочисленных движений звезд в нашей Вселенной и уточнить картину, нарисованную поэтом:
Небесный свод, горящий славой звездной,
Таинственно глядит из глубины,
И мы плывем, пылающею бездной
Со всех сторон окружены.
( Тютчев)
Интересно отметить, что своевольные, как нам кажется, скорости звезд (как отдельных коров в стаде) тем больше, чем сами звезды легче. Большинство тяжелых гигантов, как тучные люди, двигается медлительно, а легкие карлики подвижны как детвора, впрочем... есть подозрение, что в звездной семье в смысле возраста детворой-то являются как раз гиганты, а не карлики. Но это вопрос уже совсем другого рода.
Поучительно, что в газе, состоящем из разных молекул, более тяжелые молекулы тоже двигаются более медленно
Снятие мерки со звезд
Размеры планет легко рассчитать, зная расстояния до них и измерив угловой диаметр видимого их диска. Но как снять мерку со звезды, если даже в самый мощный телескоп ее диска не видно, так мал его угловой диаметр? Даже в 5-метровый телескоп все звезды видны как точки. Тут нам опять помогает физика.
Поскольку звезды излучают почти как абсолютно черное тело, закон излучения ими энергии в разных частях спектра известен. Если знать температуру звезды и ее светимость, то можно вычислить полную энергию, испускаемую звездой. Но для нее, как для черного тела, теоретическая физика умеет вычислить полную энергию,
Этот способ снятия мерки со звезд вполне надежен, но, как и всегда в науке, естественно хотелось бы найти возможность его проверить. Проверочный способ, применимый пока лишь к наиболее ярким звездам и с наибольшим угловым диаметром диска, был придуман в 1920 г. Он основан на явлении, называемом интерференцией. Для его осуществления Пизу в США пришлось преодолеть ряд технических затруднений, связанных с тем, что далее наибольший в мире телескоп оказался для данной цели недостаточно большим.
Выход из положения нашли, приделав на конце 2 1/2-метрового телескопа (наибольшего в то время) стальную ферму длиной 6 м, по которой на тележке передвигались два больших плоских зеркала, принимавших свет звезды и отражавших его на зеркало телескопа. Тогда в телескоп изображение звезды представлялось крохотным полосатым кружком. При определенной величине расстояний между зеркалами полоски на этом кружке исчезали, и тогда теория интерференции позволяла вычислить угловой диаметр невидимого диска звезды. Зная расстояние до звезды, можно было вычислить и ее линейный диаметр.
Первая звезда, диаметр которой в 1920 г. удалось измерить «непосредственно» - интерферометром, была яркая красная звезда в созвездии Ориона - Бетельгейзе. Вообще первые измерения удались для гигантских красных звезд, не особенно к нам близких, но у которых угловые размеры, видимые с Земли, ожидались наибольшими. После измерения десятка таких звезд наступил длительный перерыв - дальше мощи инструмента оказалось недостаточно. В 1956 г. в Англии удалось наконец измерить диаметр Сириуса, а в 1963 г. в Австралии измерили диаметр Беги. Это - белые звезды, гораздо меньшие, чем красные гиганты, но одни из ближайших к нам.
Результаты всех этих измерений и расчетов мы приведем немного позже. Они показывают крайнее разнообразие звездных размеров. Отметим лишь, что одной из наибольших среди известных звезд является звезда VV в созвездии Цефея. Она больше Солнца по диаметру по крайней мере в 1600 раз. Есть звезды, которые гораздо меньше Солнца.
Дьявольские звезды
Первую дьявольскую звезду открыли арабы. Это была Персея, которую они, собственно говоря, назвали просто «дьяволом» (Эль-Гуль). Она поразила их тем, что будучи обычно около 2-й звездной величины, она вдруг ослабевала почти до 4-й - она менялась на небесах, считаемых неизменными, где живет Аллах. Чем может быть такая звезда, как не звездой дьявола, если не им самим!
После долгой смены исторических событий и возникновения новых очагов культуры, несколькими веками позже изменение блеска Персея, Эль-Гуля, переделанного европейцами в Алголя, в 1670 г. подметили в Европе.
Еще через сто с лишним лет глухонемой от рождения любитель астрономии Гудрайк обнаружил периодичность изменения блеска Алголя. Его период оказался 2 дня 20 часов 49 минут. Но из них 2 дня 11 часов звезда остается постоянного блеска, а затем в течение 5 часов теряет 2/3 своего блеска с тем, чтобы через 5 часов снова к нему вернуться. Кривая изменения блеска Алголя в. зависимости от времени изображена на графике, построенном на основании современных нам измерений с помощью фотоэлектрического фотометра (рис. 144).