Чтение онлайн

на главную - закладки

Жанры

Одна формула и весь мир

Седов Евгений Александрович

Шрифт:

*Одна из 32 карточек должна быть пустой. При извлечении этой карточки в тексте оставляется пропуск, соответствующий интервалу между словами.

 Математик Р. Л. Добрушин в результате такого эксперимента получил текст, который вы уже видели на 25-й странице. Возвращаясь к нему теперь, спросим себя: стоило ли ради такой бессмыслицы делать специальный эксперимент? Оказывается, стоило. Ведь полученный Добрушиным текст — это не просто бессмыслица, а самая бессмысленная бессмыслица, какую только можно вообразить. Чередование букв наиболее беспорядочно, хаотично. Энтропия текста обладает наибольшей их всех возможных текстов величиной.

Все это вытекает

из описанной методики эксперимента. В самом деле, вероятность извлечения любой из букв одинакова, то есть выполняется уже знакомое нам условие:

Ра = Рб=... =Ря= 1/32

Чтобы это условие не нарушилось, мы настоятельно рекомендовали после извлечения карточки возвращать ее к коробку и тщательно снова все перемешивать.

Заметим, что вероятность извлечения пустой карточки, соответствующей интервалу между словами, также равна 1/32. Поэтому-то такими несуразно длинными получились слова нашего странного текста: каждое слово, формируемое описанным способом, состоит в среднем из 32 букв, то есть на каждые 32 наугад извлеченные буквы попадется в среднем один интервал.

В реальных текстах средняя длина слова составляет примерно 6 букв. Это значит, что в реальных текстах интервал встречается примерно в 5 раз чаще, чем в нашем эксперименте. Значит, его вероятность для реального текста составляет не 1/32, а 5/32= 1/6=0,17.

Так же обстоит дело и с остальными буквами вероятность их появления в реальных текстах значительно отличается от 1/32.

Для определения реальных значений вероятностей появления букв в письменных текстах фиксировали частоту появления каждой буквы на протяжении сотен и тысяч страниц.

В результате такого учета было установлено, что чаще всего в русских текстах появляется буква «О» (ро = 0,09), а реже всего буква «Ф» (рф = 0,002) 6.

**Сравните с вероятностью появления тех же букв в описанном эксперименте:Ро=Рф=1/32= 0,03

 Чаще, чем буква «О» и другие буквы, появляются в русских текстах интервалы между словами. Их вероятность составляет ринтервала = 0,17.

Благодаря тому, что вероятности появления различных букв в реальных текстах неодинаковы, их энтропия (беспорядочность) меньше, чем в экспериментальном, искусственном тексте. Реальные тексты отличаются от энтропийного определенным порядком чередования букв.

Чтобы уяснить, как возникает порядок, попытаемся составить текст, в котором соблюдались бы реальные вероятности появления букв. Для этого нам придется вновь поместить карточки с буквами в общую коробку, но теперь понадобится не 32 карточки, а значительно больше, потому что число карточек должно быть пропорционально вероятностям появления букв (например, на две карточки с буквой «Ф», имеющей вероятность рф =0,002, должно приходиться 90 карточек с буквой «О», имеющей вероятность Ро =0,09 и т. д.).

Впрочем, можно не тратить времени на приготовление множества карточек с буквами. Тот же эксперимент можно проделать без карточек, используя обычный печатный текст. Ведь в тексте каждая буква будет встречаться именно с той частотой, которая соответствует ее вероятности.

Если, закрыв глаза, наугад переворачивать страницы и указывать на букву, а затем приписывать ее к ряду ранее таким же

образом отобранных букв, то вы получите новый искусственный текст, в котором частота появления букв будет соответствовать вероятности их появления в русском тексте. Действуя таким образом, Р. Л. Добрушин получил фразу, помещенную в нижеприведенной таблице под номером 2.

НОМЕР ФРАЗЫ Фраза УСЛОВИЕ ПОЛУЧЕНИЯ ФРАЗЫ 1 СУХЕРРОБЬДЩ ЯЫХВЩИ-ЮАЙЖТЛФВНЗАГФО-ЕНВШТЦР ПХГБКУЧТЖЮ-РЯПЧЬЙХРЫС Принято условие равной вероятности всех букв алфавита и интервала между словами 2 ЕЫНТ ЦИЯЬА ОЕРВ ОДНГ ЬУЕМЛОЛПКЗБЯ ЕВНТША Учтены вероятности отдельных букв в русском тексте 3 ВЕСЕЛ ВРАТЬСЯ НЕ СУХОМ И НЕПО И КОРКО Учтены вероятности 4-буквенных сочетаний в русском тексте 4 ТЕОРИЯ ИНФОРМАЦИИ ПОЗВОЛЯЕТ ИЗУЧИТЬ ЭТО СВОЙСТВО РЕАЛЬНЫХ... Соблюдены реальные вероятности сочетания всех букв

Мы намеренно расположили фразу № 2 рядом с ранее полученной искусственной фразой № 1, чтобы читатель мог наглядно убедиться, насколько возрос порядок в тексте после того, как мы учли реальные вероятности появления букв.

В чем проявляется порядок? Во-первых, исчезли из текста слова несуразно длинные. Это произошло потому, что мы учли реальную вероятность появления интервала между словами (Ринтервала =0,17).

Во-вторых, в отличие от фразы № 1, где друг за другом следовали 5 или 6 согласных букв (ЖТЛФВНЗ и т. п.), во фразе № 2 гласные и согласные буквы чередуются более или менее равномерно, потому что учтены реальные вероятности появления и тех и других. Благодаря этому слова фразы № 2 стали более или менее «удобочитаемы», в отличие от фразы № 1, где сколько бы вы ни старались, вам не удастся произнести вслух такие сочетания букв, как БЬДЩ или ЖТЛФВНЗ.

Впрочем, и во фразе № 2 порядок не столь велик, чтобы всю эту фразу можно было «озвучить». Ну как, например, произнести стоящий в начале слова ЬУЕМЛОЛЙК-ЗБЯ мягкий знак?

По всей видимости, в нашей упорядоченной фразе № 2 еще не учтены все правила, по которым строятся реальные тексты. Чтобы сделать еще один шаг, приближающий наши искусственные фразы к фразам реальных текстов, давайте несколько усложним эксперимент. Будем учитывать вероятности не только отдельных букв, но л их сочетаний. Для этого снова раскроем наугад какую-нибудь книгу и из случайно выбранного слова выпишем четыре буквы, идущие одна за другой, например ВЕСЕ. Теперь будем скользить глазами по строчкам текста до тех пор, пока не встретим в тексте сочетание ЕСЕ (три последние буквы нашей записи ВЕСЕ). Выпишем ту букву, которая следует за сочетанием ЕСЕ (если, к примеру, встретившееся нам сочетание ЕСЕ принадлежит слову «ПЕРЕСЕЛЕНИЕ», то выпишем следующую за сочетанием ЕСЕ букву Л). Теперь записанное нами сочетание букв превратилось в ВЕСЕЛ. Снова запоминаем три последние буквы СЕЛ и ищем такое же сочетание в реальном тексте. Допустим, что такое сочетание встретилось нам в словах «присел на скамейку». В этом тексте следом за сочетанием СЕЛ следует интервал. Значит и в «конструируемом» нами тексте интервал должен следовать за сочетанием ВЕСЕЛ.

Поделиться:
Популярные книги

Барон Дубов 3

Карелин Сергей Витальевич
3. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 3

Блуждающие огни 5

Панченко Андрей Алексеевич
5. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 5

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3