Одна формула и весь мир
Шрифт:
Пусть читатель извинит нас за грубость этой «пищеварительной» аналогии, которая дает весьма наглядное представление о роли, которую играют содержащиеся в каждом тексте величины Нр и Iп.
Их присутствие не обнаруживается с первого взгляда. Для выявления соотношения непредсказуемой и избыточной информации, содержащейся в текстах, понадобились годы упорного и кропотливого труда. И даже он не привел бы ни к каким результатам, если бы теория информации не предложила способов измерений информации, позволивших выразить величины Нр
Веками копил язык информацию, создающую в чередовании звуков и букв определенный сложный порядок. Именно избыточная информация, накапливаемая в совокупности всех грамматических и фонетических правил, собственно, и сделала язык языком. А замечательная функция
Ну а если этот процесс продлится и дальше? Во что в конце концов превратится письменный текст?
Если много раз подряд подбрасывать игральную кость и записывать выпавшие очки, получится случайное чередование чисел: 3, 2, 5, 4, 1, 6, 2, 2, 6, 3 и т. д.
Какова вероятность того, что в следующий раз выпадет грань с пятью точками? Догадаться нетрудно. Если все грани строго симметричны, то с равной вероятностью может выпасть любая из 6 граней, то есть p1=р2 = p3 = р4 = р5 = р6=1/6 .
А какова вероятность того, что при очередном броске выпадет любая из 6 граней? Каждый легко догадается, что вероятность такого события равна единице. В самом деле, не может же игральная кость встать на ребро!
На языке теории вероятностей это условие запишется вот в каком виде:
Точно таким же образом на языке теории вероятностей можно сказать, что, закрыв глаза и передвигая кончик карандаша вдоль строки какой-нибудь книги, а затем остановив его наугад, вы обязательно попадете на букву (если считать буквой и интервал). Это условие записывается в виде:
Используя математический знак суммирования
Зная это условие, можно предсказать, что же в конце концов произойдет с текстом, если будет продолжаться тот процесс его упорядочивания, который можно наблюдать, просматривая сверху вниз все фразы, записанные в нашей таблице. Мы уже знаем, что бессмысленная фраза № 1 может превратиться в некоторое подобие осмысленного текста только в том случае, если разные буквы будут иметь различные вероятности. А только что записанное нами условие позволяет сделать следующий вывод: чем больше становятся вероятности
В царстве букв происходит процесс образования своего рода кастовых сословий: преимущества одних букв оплачиваются бесправием других. Возможность выхода в свет
бесправных ограничена малой вероятностью их появлений на страницах газет, журналов и книг. Зато избранные буквы всегда на виду. А если продолжить этот процесс расслоения до его логического завершения, то в конце концов одна какая-то буква (например, «А») должна узурпировать все права (этот процесс будет выражаться условием рА = 1), а вероятности всех остальных букв в силу условия
Так что же осталось от текста? АААА... Странный текст! А главное, в принципе непонятно: копил, копил язык информацию, развивался, вырабатывал правила, усложняя собственную структуру, а в итоге... выродился в примитивное АААА...
Что можно сообщить таким текстом? Кое-что, оказывается, можно. Представим себе такую ситуацию: мы договорились заранее с отправителем сообщений, что получив направленный к нему груз, он подтвердит его получение условным сигналом «А». Груз направляется периодически (скажем, раз в сутки молочная фабрика доставляет свою продукцию базе), и каждый раз в качестве подтверждения приходит все то же сообщение «А».
Но допустим, что адрес базы переменился, и надо сообщить об этом на фабрику. Вот тут уж одной буквой не обойдешься, придется вновь вспоминать о том, что, помимо «А», существует еще целый алфавит, и составлять необходимый для сообщения нового адреса текст.
Теперь становится ясно, что же в конце концов получилось из текста: накапливая порядок и информацию, он постепенно выродился в узкоспециализированный текст, который имеет смысл только для заранее обусловленных, строго определенных и неизменных условий. Если что-нибудь в условиях изменилось, текст становится нежизнеспособным: сообщить хотя бы о перемене адреса с его помощью уже нельзя.
Да и в тех случаях, когда адрес не изменяется, текст из одних «А» нужен лишь до тех пор, пока нет стопроцентной уверенности в своевременном прибытии груза. А что если груз неизменно и своевременно приходит по заданному адресу, как, например, регулярно проходят планеты определенные точки своих орбит? В этом случае сообщать вообще ничего не нужно. Регулярный текст « А — пауза — А — пауза — А...» может тянуться до бесконечности, не давая никакой дополнительной информации, поскольку время и место доставки груза, так же как и орбиты планет, подтвержденные и наблюдением и расчетом, известны еще до получения сообщения «А — пауза — А — пауза — А...». Подобный текст из регулярно повторяющихся одинаковых сообщений не только избыточен, но и бесполезен: он содержит в себе только средство для переваривания пищи (избыточную информацию), а пищи (то есть новой, неожиданной, непредсказуемой информации) в данном случае нет.
ЗАТМЕНИЯ СОЛНЦА. СЕРДЦЕ И НЕРВЫ. КЛАССИКА И МОДЕРНИЗМ.ТЕАТР АБСУРДА. СЛОВЕСНАЯ УДАЛЬ. ЗАКОНОДАТЕЛЬНИЦЫ МОД. В ПОИСКАХ ЗОЛОТОЙ СЕРЕДИНЫ
Какой же вывод следует из проведенного нами энтропийного анализа текста? Прямо скажем, не утешительный. Пока вероятности букв одинаковы, текст был бессмысленно хаотичным. Потом вероятности стали различными, в тексте стал образовываться определенный порядок. Но если продолжить мысленно этот процесс вплоть до логического его завершения, то текст превратится в повторение одной какой-нибудь буквы.