Огонь! Об оружии и боеприпасах
Шрифт:
Сложно удержаться от восхищения столь ярким, удачным образом, хотя из него следует и некомплиментарный вывод: всякое устройство имеет пределы работоспособности и, если регистрируемая им в нормальном режиме мощность очень и очень мала, то мощность сигнала, который оно «не вынесет» и выйдет из строя — тоже не слишком велика. Образно говоря — достаточно бросить горстку песка, чтобы крайне патриотически настроенная, но ничего не «видящая» дура, весом более тонны, с обиженным
В главе 3 уже были упомянуты эффекты воздействия на электронику электромагнитного импульса, генерируемого образованным ядерным взрывом плазмоидом. Но такие экстремальные режимы не являются единственно возможными…
…Обретение радиочастотным электромагнитным излучением (РЧЭМИ) свойств поражающего фактора произошло как в результате создания мощных его источников, так и того, что в электронике на смену лампам, которые невозможно «сжечь», пришла полупроводниковая элементная база с высокой степенью интеграции. Платой за колоссально возросшие при этом функциональные возможности электронной техники стала повышенная уязвимость важнейших полупроводниковых элементов субмикронных размеров к токовым перегрузкам, вызываемым облучением. В результате при действии по целям, в состав которых входят современные электронные средства, радиочастотное электромагнитное излучение (РЧЭМИ) значительно превосходит по энергетической эффективности традиционные ударную волну и осколки. Например, стойкий функциональный отказ крылатой ракеты происходит при воздействии одного из поражающих факторов со следующими значениями плотности энергии (Дж/м2):
— осколки весом не менее одного грамма каждый — 100000;
— воздушная ударная волна — 50000;
— поток РЧЭМИ микросекундной длительности — 1—10.
Повышение степени интеграции, дальнейшая миниатюризация полупроводниковых элементов означают, что такие элементы будут становиться все менее стойкими к токовым перегрузкам. Так что РЧЭМИ — весьма эффективный поражающий фактор, во всяком случае, когда речь идет о целях, в состав которых функционально входит электроника: сама угроза его боевого применения встает на пути миниатюризации — основной тенденции развития электронных средств.
Однако есть у РЧЭМИ и недостатки: его пока не научились накапливать, да и вообще — с хранением не только излучения, а и электромагнитной энергии других видов дело обстоит неблагополучно. Так, например, в заряженном высоковольтном конденсаторе максимальная плотность электрической энергии не превышает десятых долей джоуля на кубический сантиметр, и хранится она недолго; в аккумуляторе плотность энергии повыше, но ее нельзя «извлечь» быстро, скажем — за миллионные доли секунды. Так что энергию надо «доставать» из других «хранилищ» и уж затем преобразовывать ее в электромагнитную; при этом не избежать очень существенных потерь и потому итоговые эффективности электромагнитного и традиционного оружия отличаются не так разительно, как эффективности отдельно взятых поражающих факторов.
«Хорошие» хранилища энергии существуют: это те же взрывчатые вещества. Но если появление электроники привело к качественному скачку в боевых возможностях оружия, то взрывчатые вещества такого скачка за то же время не сделали: «на арену» вышел лишь октоген, превосходящий «сверхвзрывчатку Второй мировой» — гексоген — всего-то на несколько процентов по энергосодержанию. Дело в том, что, в соответствии со вторым началом термодинамики, любая реакция с выделением энергии самопроизвольно протекает всегда (правда, «начало» ничего не сообщает о скорости такой реакции) и ВВ не могут не разлагаться. Иногда продукты разложения ускоряют распад и все заканчивается самовоспламенением и взрывом. Требование стабильности является существенным ограничением и плотность химической энергии в самых мощных современных ВВ не превышает 10000 Дж/куб. см [35] . Может быть, и можно синтезировать более мощное вещество, но чувствительность и стойкость его будут такими, что к нему небезопасно станет приближаться.
35
Что, однако, на пять порядков больше плотности энергии в конденсаторе и позволяет развить при детонации мощность в многие тераватты)
Современная технология химического производства позволила получить и из ограниченного набора разрешенных к применению ВВ весьма разнообразные взрывчатые материалы. В годы «холодной войны» многие стратегически важные мосты в Западной Европе имели в составе своих «быков» блоки, наполнителем бетона которых служил октоген: марш численно превосходящих советских танковых соединений рассчитывали остановить, не тратя драгоценное время на заложение зарядов, а только устанавливая детонаторы в известные саперам участки опор. Из композиций на основе октогена горячим прессованием получают заряды ВВ с хорошими механическими свойствами (в такой детали можно нарезать метчиком резьбу
36
Вспомним, что в первой главе было написано про скорость детонации: она равна местной скорости звука в продуктах реакции. Понятно, что связки не должно быть слишком много — иначе детонация может и затухнуть
Гарантированный срок хранения ВВ — чуть более десятилетия, но фактически взрывчатые свойства сохраняются значительно дольше: даже снаряжение пролежавших более чем полвека в земле боеприпасов (рис. 4.5) демонстрирует образцовое дробление корпуса.
Чтобы понять, как из надежно хранимой в ВВ химической энергии получают электромагнитную, необходимо познакомиться с важнейшей физической величиной — магнитным потоком.
Магнитным потоком Ф через данную поверхность называется число линий вектора В (индукции магнитного поля), пересекающих эту поверхность. Если вектор В всюду нормален к поверхности (площадью S) и имеет постоянное значение во всех ее точках, магнитный поток равен Ф = BS. Это определение вполне эквивалентно другому: если в контуре индуктивностью L течет ток I, то магнитный поток в таком контуре равен Ф = IL. Также допустимо, рассматривая магнитный поток в контуре, «преобразовывать» контур, «завивая» его в несколько витков, тогда поток в нем будет равен тройному произведению: индукции поля на площадь витка и на число витков; можно поступить и наоборот, «развернув» витки (рис. 4.6).
В сверхпроводник внешнее магнитное поле не проникает, в вакууме распространяется со скоростью света, а в проводниках — значительно медленнее: за микросекунду оно проникает, например, в медь на глубину в десятки микрон (характерная скорость — всего лишь десятки метров в секунду). Глубина проникновения поля в проводник называется скин-слоем, и зависит она, помимо проводимости, от частоты тока или от длительности импульса переменного во времени поля.
Распределение индукции поля по толщине скин-слоя неравномерно (описывается уравнением диффузии), но в любом случае такое поле уже «связано» и не может участвовать в быстропротекающих процессах, сопровождающих преобразование электромагнитной энергии. Из рис. 4.6 ясно, что, при прочих равных условиях, потери такого рода тем больше, чем на большей длине провода (или числе витков) происходит диффузия поля. В конечном итоге энергия «потерянного» поля превращается в тепло, вызывая нагрев металла провода вихревыми токами. Так что, если задумано сжать магнитный поток, «стянув» контур и получить при этом многочисленные дивиденды в виде усиления тока и магнитной энергии, надо стягивать контур столь быстро, чтобы существенная часть начального потока в нем сохранилась.