Чтение онлайн

на главную - закладки

Жанры

Огонь! Об оружии и боеприпасах
Шрифт:
Рис. 4.40. Зависимость пространственного распределения излучения простейшего диполя от его размера и длин излучаемых волн (цифры под диаграммами — отношения этих величин, длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения).

Проиллюстрируем это простейшее качественное описание (рис. 4.40). Цифры под диаграммами — отношения размера петли-антенны к длине волны, а длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения. Но каждая из этих диаграммы приведена для случая одной токовой волны, а если этих волн несколько? Наложите друг на друга хотя бы четыре диаграммы рис. 4.40, длины волн для которых

различаются в пределах всего-то одного порядка! А ведь излучение УВИС и ВМГЧ состоит из мириадов гармоник, с частотами, отличающимися друг от друга в пределах трех порядков, а не в 10 раз. Отражение от земли еще более усложняет распределение, но в целом можно считать, что интегральная (проинтегрированная по всему диапазону частот) энергия рассеивается в пространстве по всем направлениям.

Насколько мучителен процесс спектральных измерений — передать сложно. Без особой надежды на создание у читателя соответствующей эмоциональной реакции, постараюсь его описать. То, что для измерений спектра необходимы специально разработанные приборы, понятно. Измерения производятся только в узких «полосах» (пропускание было существенно лишь для РЧЭМИ с частотами, отличавшимися примерно на 5 % от «центральной»), а в остальных диапазонах, которые, по оценкам, охватывали минимум четыре частотные декады (от десятков мегагерц до десятков гигагерц) эффективные фильтры препятствуют приему. Спектрометр (рис. 4.41) регистрирует и огибающую нескольких импульсов (рис. 4.42), давая информацию о мощности каждого из них в данном частотном диапазоне. Вся полученная информация хранится в памяти спектрометра и выводится на компьютер после опыта и вскрытия тщательно экранированного корпуса прибора (иногда — после перевозки его с полигона в гостиницу). Спектрометр полностью автономен (питание — от аккумуляторов). Отсутствие каких-либо гальванических связей является дополнительной гарантией от наводок, вызванных внеполосным РЧЭМИ. Зарегистрировав значение мощности РЧЭМИ в пределах «полосы» и поделив его на протяженность частотного интервала, получают значение спектральной плотности мощности или энергии — одну точку, каплю в огромном, более чем трехдекадном частотном море. Нечего и думать, чтобы получить таким методом весь спектр, а также пространственное распределение излучения, потому что для этого потребовались бы тучи спектрометров, для закупки которых не хватило бы доли бюджета, выделяемой Министерством обороны на исследовательскую деятельность во всех областях. Но вполне реальна другая возможность: получив несколько точек, восстановить по ним спектр, используя теоретическую модель явления. Если очень уж довериться этому способу, достаточно и одной точки, но такая самонадеянность вряд ли оправданна.

Рис. 4.41. Спектрометр, регистрирующий энергию и форму огибающей импульса РЧЭМИ в пределах очень узкой полосы частот
Рис. 4.42. Пример «цуга» — серии импульсов РЧЭМИ

Дело здесь не в точности спектрометра (инструментальная ошибка невелика и составляет проценты) а в самой природе процесса.

Для излучения простейшего диполя (проволочная петли), число максимумов (рис. 4.40) возрастает с ростом различий размера петли и длин волн.

Сверхширокополосный источник излучает во всех направлениях. Но это не значит, что в пространственном распределении его излучения не существует минимаксов для отдельных, очень узких частотных диапазонов, и, даже если нет никаких признаков изменений режима работы излучателя, едва заметный его поворот приводит к тому, что мощность, регистрируемая спектрометром, изменяется весьма существенно. Каждый опыт стоит дорого и набирать статистику весьма накладно, поэтому из соответствующего вероятностного распределения и следуют огромные величины ошибок. Только когда экспериментальных точек, пусть и в разных частях спектра, достаточно много, восстановить спектр РЧЭМИ можно более-менее достоверно.

…При испытаниях лабораторных макетов ВМГЧ не было смысла возиться с автономной системой их энергообеспечения, но. когда была продемонстрирована эффективность возможного боевого применения излучателей этого класса, такая задача стала актуальной.

Рис. 4.43. Система постоянных магнитов, предназначенная для создания начального поля в ВМГЧ. Ориентация элементов системы такова, что внутри спирали поля элементов складываются, а вне спирали — вычитаются

Как

нетрудно видеть из осциллограммы 4.38а, ВМГЧ и сам мог «раскачивать» электрические колебания, поэтому напрашивалось решение: применить для создания, пусть и очень небольшого, начального поля в обмотке излюбленные постоянные магниты (рис. 4.43)! Их расположили так, что внутри обмотки ВМГЧ поля суммировались, а вне обмотки — вычитались. Но и такие ухищрения не позволили повысить энергию начального поля в СВМГ до величин, превышающих джоуль — слишком мала остаточная магнитная индукция даже в лучших материалах, таких как «железо — неодим-бор». А это означало, что ВМГЧ с такой системой создания начального поля будет весьма «длинным» — объем, отведенный под боеприпас, будет использоваться нерационально. Но вспомнили: есть уже отработанное для ЦУВИ устройство, способное дать энергию в десятки тысяч раз большую, чем постоянные магниты. Чтобы использовать такой ценный задел, излучатель необходимо было доработать.

Имплозивный магнитный генератор частоты (ИМГЧ) существенно отличался от ЦУВИ лишь детонационной разводкой (обратите внимание — она формирует при срабатывании не цилиндрическую, а тороидальную детонационную волну) да конструкцией излучателя (рис. 4.44): вместо рабочего тела из монокристалла, внутри соленоида I, которому после подрыва кольцевого заряда взрывчатки 2 суждено стать лайнером, располагается катушка 3, а внутри нее — конденсаторы 4 (последовательно соединенные). Лайнер, сжимая магнитное поле, «втискивает» его внутрь катушки при ударе, создав своего рода взрывной трансформатор, а затем последовательно закорачивает витки катушки (точки контакта при этом двигаются к обеим ее концам), генерируя РЧЭМИ «быстрых» гармоник точно также, как это происходит в ВМГЧ. Время генерации РЧЭМИ для такой схемы оценивалось в пару микросекунд, а начальная энергия ограничивалась только электропрочностью изоляции катушки. Главное же — зависимость выхода РЧЭМИ от величины начальной энергии, «закачиваемой» в катушку близка к линейной и нестабильность работы ФМГ и ВМГ не приводит к фатальным последствиям: выход РЧЭМИ по этой причине меняется незначительно. Но «скакнула» вверх и стоимость изделия.

Рис. 4.44. Схема имплозивного магнитного генератора частоты (ИМГЧ)

Работа с мертвой точки сдвинулась только тогда, когда отказались от паллиативных решений, сделав все «по-новому».

…Электрические заряды в диэлектриках связаны и не могут двигаться свободно, как в металлах. Диэлектрики способны накапливать энергию: если «закоротить» заряженный конденсатор (удалив, таким образом, свободные заряды с металлических обкладок), а затем снять закоротку, спустя небольшое время конденсатор снова окажется частично заряжен (возможно, некоторые читатели убедились в этом, работая с установкой «водяной кумуляции») Причина в том, что изолятор при зарядке был поляризован внешним полем. При «закорачивании» сразу исчезло поле, а направленная поляризация частично сохранилась. Возвращение поляризации к равновесному значению вызывает протекание тока смещения, вновь заряжающего конденсатор.

Структурные элементы некоторых видов диэлектриков (сегнетоэлектриков, пьезоэлектриков) обладают собственными электрическими дипольными моментами. Сегнетоэлектрики неограниченно долго сохраняют остаточную поляризацию и деполяризуются лишь при нагревании до точки Кюри (для большинства из них — около 100 °C). Эффективно нагревает любое вещество ударная волна, но сегнетоэлектрики более «капризны», чем ферромагнетики: слишком мощная волна может индуцировать в них столь сильное поле, что возникнет пробой и ток смещения не будет заряжать металлические обкладки, между которыми расположено рабочее тело (РТ). Но пусть все обошлось без пробоя, тогда пьезоэлемент — такой же, как в зажигалке, но значительно больший по размерам — зарядит конденсатор генератора частоты.

Рис. 4.45. Витковый генератор частоты (ВГЧ) и его схема

Как и в ядерных боеприпасах, в крупнокалиберных ЭМБП целесообразно размещать несколько небольших излучателей, рассеиваемых перед групповым подрывом — тогда цели поражаются на большей площади. Для кассетных элементов был разработан витковый генератор частоты (ВГЧ, рис. 4.45), обмотка которого состоит из одного, и то неполного витка 1. Короткая труба 2 смещена в сторону пьезоэлементов 3, поэтому сначала она, расширяясь под действием взрыва, «выбивает» из них ток, заряжая конденсатор 4, а уж затем замыкает контур, генерирующий излучение. Как и в случае других генераторов частоты, для ВГЧ была создана полуэмпирическая модель, в значительной степени опирающаяся на результаты токовых измерений (рис. 4.46).

Поделиться:
Популярные книги

Птичка в академии, или Магистры тоже плачут

Цвик Катерина Александровна
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Птичка в академии, или Магистры тоже плачут

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Честное пионерское! Часть 1

Федин Андрей Анатольевич
1. Честное пионерское!
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Честное пионерское! Часть 1

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора