Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

«„Тензоры“ в TensorFlow не имеют ничего общего с тензорами! — пишет рассерженный пользователь Locken Lui в комментарии к посту на платформе Medium. — Это злоупотребление использованием термина тензор. „Тензоры“ в смысле, используемом в TensorFlow, являются просто многомерными матрицами и не имеют ничего (!) общего с реальными тензорами в физике, континуальных теориях или теориях поля. Вы смешиваете эти понятия в своём посте. Возможно, название „Tensor“ было выбрано потому, что оно звучит проще, чем “MultidimensionalMatrixFlow”» [1561] . Мы понимаем вашу боль, Locken Lui, и разделяем её.

1561

Locken Lui (2018). “Tensors” in TensorFlow… / Medium, Aug 24, 2018 // https://medium.com/@lockenluy/tensors-in-tensorflow-have-nothing-to-do-with-tensors-2ffb75172d05

В последние годы производители электроники уделяют большое внимание созданию так называемых граничных [edge] устройств.

Под граничными вычислениями [edge computing] обычно понимают децентрализованную обработку данных, при которой вычисления производятся на «последней миле» компьютерной сети. Вычислительные процедуры, производящие объёмный и в то же время индивидуализированный пользовательский контент, в ряде случаев выгодно располагать ближе к точке его потребления. Поэтому возникает необходимость в устройствах, способных выполнять необходимые вычисления в составе мобильных устройств, систем «умных домов», узлов игрового стриминга [edgelets] и так далее.

В июле 2018 г. Google анонсировала Edge TPU — специализированную микросхему ASIC, предназначенную для запуска моделей машинного обучения для граничных вычислений. Edge TPU имеет значительно меньший размер и потребляет гораздо меньше энергии по сравнению с облачными TPU.

Смешная третья опция для современного проектировщика нейронных сетей (помимо GPU/TPU и CPU, обычных центральных процессоров, которые, кстати сказать, сегодня тоже активно развиваются в направлении расширения наборов инструкций за счёт быстрых векторных операций) — это использование FPGA — устройств, относящихся к категории программируемых логических интегральных схем (ПЛИС). FPGA в наши дни часто используют для прототипирования ASIC: удобно сперва испытать ту или иную архитектуру микросхемы, прежде чем отправить её в серийное производство.

Если вас интересует более подробный анализ состояния дел в мире оборудования, предназначенного для задач глубокого обучения, то рекомендую регулярно дополняемый обзор [1562] от Григория Сапунова, в котором можно найти сведения о последних проектах в чудесном мире CPU, GPU и TPU, ПЛИС и ASIC.

5.3.4 Импульсные нейронные сети

В целом поступательный рост производительности цифровых вычислительных устройств в совокупности с созданием специализированных процессоров, способных более эффективно выполнять алгоритмы, используемые при обучении и выполнении нейронных сетей, оказали чрезвычайно мощное воздействие на прогресс в области нейросетевых технологий. Нередко приходится слышать, что это стало чуть ли не единственным фактором, определившим прогресс в данной области. Такая точка зрения, безусловно, грубо упрощает информацию о состоянии дел в отрасли и обесценивает усилия разработчиков новых моделей и алгоритмов. Но в то же время глупо было бы отрицать, что некоторые модели и методы просто не могут эффективно применяться в отсутствие соответствующих вычислительных ресурсов. Развитие моделей связано с организацией множества вычислительных экспериментов, для постановки которых необходим доступ к подходящему оборудованию.

1562

Sapunov G. (2021). Hardware for Deep Learning / Intento, Feb 26, 2018 — Jan, 11, 2021 // https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc

Иногда устройства, предназначенные для ускорения работы нейронных сетей, называются также ИИ-ускорителями (AI accelerators) или NPU (Neural Processing Unit, Нейронный процессор). В их число обычно включают также и нейроморфные процессоры, которые мы коротко упомянули в подглаве 4.4.6. Современные нейроморфные системы можно условно разделить на два класса: системы, целью которых является моделирование процессов, происходящих в нервной ткани живых существ, и системы, ставящие своей целью решение прикладных задач искусственного интеллекта на основе импульсных нейронных сетей (spiking neural networks, SNN). Для удобства мы будем называть первые нейроморфными системами типа I, а вторые — нейроморфными системами типа II.

Термин «импульсные нейронные сети» появился с лёгкой руки профессора Вольфганга Маасса, который в своей статье 1997 г. предложил разделить нейронные сети на три поколения. К первому он относил нейронные сети на основе нейронов с пороговой функцией активации, ко второму — сети на основе нейронов с непрерывными функциями активации (сигмоидальными, полиномиальными и т. д.), а к третьему — сети, которые в качестве вычислительных единиц используют так называемые импульсные нейроны [1563] .

1563

Maass W. (1997). Networks of spiking neurons: The third generation of neural network models / Neural Networks, Vol. 10, Iss. 9, December 1997, pp. 1659—1671 //00011-7

Импульсные нейроны, в отличие от нейронов обычного перцептрона, срабатывают не на каждом из циклов распространения сигнала, а только тогда, когда их мембранный потенциал (т. е. разница в электрическом заряде внутренней и внешней поверхностей клеточной оболочки) достигает определённого значения. Когда нейрон срабатывает, он генерирует сигнал, который передаётся другим нейронам, которые, в свою очередь, увеличивают или уменьшают свои мембранные потенциалы в соответствии с этим сигналом. Несложно убедиться, что источником вдохновения для импульсной модели нейрона послужили работы Луи Лапика, Ходжкина, Хаксли и других нейрофизиологов, занимавшихся изучением распространения электрических сигналов в нервной ткани. Системы уравнений, описывающие накопление потенциала, его утечки, срабатывание нейрона и так далее, могут различаться в различных импульсных моделях. Обычно выбор конкретной модели зависит

от области применения нейроморфной системы, именно поэтому модели, лежащие в основах систем типа I, тяготеют к большей биологической достоверности; модели же, лежащие в основе систем типа II, обычно выбираются таким образом, чтобы обеспечить снижение вычислительных затрат и большее удобство применения в используемом типе оборудования. Среди преимуществ систем типа II по сравнению с тензорными процессорами можно назвать их крайне низкий уровень энергопотребления и тепловыделения.

Первые сети третьего поколения (далее — импульсные сети) появились задолго до работ Маасса. Их история не менее интересна, чем история «конвенциональных» искусственных нейронных сетей. У истоков этого направления стоял биофизик Отто Шмитт, известный в качестве автора термина «биомиметика». Старший брат Отто, Фрэнсис, был биологом и изучал в MIT «молекулярную организацию клеток и тканей с особым акцентом на нервные волокна». Отто выбрал близкую тему для исследований в аспирантуре. Он использовал свои знания в области электротехники, стремясь создать искусственные конструкции, способные имитировать распространение импульсов по нервным волокнам. В результате в 1934 г. увидел свет так называемый триггер Шмитта, реализованный на базе электровакуумных триодов. В 1937 г. Шмитт описал его в диссертации под названием «термионный триггер» [1564] . Как и для Ходжкина и Хаксли, источником вдохновения для Шмитта стала нервная система кальмара. В 1940 г. собственную электрическую схему для моделирования работы нерва создал французский исследователь Филипп Фабр, известный в наши дни как изобретатель электроглоттографии [1565] . В своей работе Фабр ссылается на Лапика, а также на ряд исследователей, изучавших нервную проводимость в 1920–1930-е гг. [1566] , [1567] Конечно, все эти ранние работы (как и ряд более поздних) не ставили перед собой задачу создания вычислительных устройств. Действующие электрические модели нейрона в те годы создавались главным образом для исследований в области физиологии и медицины [1568] . Позже, в 1960 г., на заре эпохи интегральных схем, американский инженер Хьюитт Крейн из Стэнфордского исследовательского института предложил концепцию нейристора [neuristor], способного заменить собой все логические элементы цифровой схемы. Впрочем, признавая, что сам по себе нейристор пока что не создан, автор в качестве варианта предлагал ссылаться на его модель как на «эвристор» [heuristor], чтобы приберечь название «нейристор» до того момента, когда такие устройства будут созданы [1569] . Появление таких устройств не заставило себя ждать. Пионерскими работами в этой области стали конструкции Коута и Нагумо.

1564

Schmitt O. H. (1937). Mechanical Solution of the Equations of Nerve Impulse Propagation / Proceedings of the American Physiological Society, 49th Annual Meeting, Memphis, TN, April, 1937.

1565

Hezard T., Helie T., Doval B., Bernardoni N. H., Kob M. (2012). Non-invasive vocal-folds monitoring using electrical imaging methods / 100 years of electrical imaging, Jul 2012, Paris, France. pp. 1—4 // https://hal.archives-ouvertes.fr/hal-00769567

1566

Fabre P. (1940). Retour Sur Un Modele Du Nerf (Premiere Partie) / Archives Internationales de Physiologie, 50(1), pp. 12—32 // https://doi.org/10.3109/13813454009148741

1567

Fabre P. (1940). Retour Sur Un Modele Du Nerf (Deuxieme Partie) / Archives Internationales de Physiologie, 50(2), pp. 185–196 // https://doi.org/10.3109/13813454009145553

1568

Zaghloul M. E., Meador J. L., Newcomb R. W. (2012). Silicon Implementation of Pulse Coded Neural Networks. Springer Science & Business Media // https://books.google.ru/books?id=rE3hBwAAQBAJ

1569

Crane H. D. (1960). The Neuristor / IEEE Transactions on Electronic Computers, EC-9(3), pp. 370—371 // https://doi.org/10.1109/tec.1960.5219861

В 1960–1970-е гг. было предложено множество различных схем реализации нейронных систем, ряд из которых можно отнести к импульсным сетям. Среди интересных проектов в этой области, осуществлявшихся в то время, стоит упомянуть исследования, выполненные в рамках американо-польского научного сотрудничества. Обширная программа совместных исследований финансировалась в начале 1970-х гг. Национальным научным фондом США с использованием польских займов на покупку пшеницы (Польша приобретала американскую пшеницу, что увеличивало её долг перед США, которые снижали размер этого долга на сумму бюджета польской части исследований).

Эта уникальная программа, в рамках которой совместно работали учёные из стран, принадлежавших к разным военно-политическим блокам, была направлена на разработку биполярных и МОП-схем (металл — оксид — полупроводник), подходящих для построения специализированных интегральных схем для искусственных нейронных сетей. Последние с лёгкой руки профессора Николаса Деклариса стали называть микросхемами нейронного типа [neural-type]. С польской стороны проектом руководил доктор Михал Бялко из Гданьского политехнического университета (Politechnika Gdanska), с американской — профессора Декларис и Роберт Ньюкомб из Мэрилендского университета в Колледж-парке (University of Maryland, College Park).

Поделиться:
Популярные книги

Институт экстремальных проблем

Камских Саша
Проза:
роман
5.00
рейтинг книги
Институт экстремальных проблем

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Ведьмак. Перекресток воронов

Сапковский Анджей
Фантастика:
фэнтези
5.00
рейтинг книги
Ведьмак. Перекресток воронов

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Весь Карл Май в одном томе

Май Карл Фридрих
Приключения:
прочие приключения
5.00
рейтинг книги
Весь Карл Май в одном томе

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Отцы-основатели. Весь Саймак - 10.Мир красного солнца

Саймак Клиффорд Дональд
10. Отцы-основатели. Весь Саймак
Фантастика:
научная фантастика
5.00
рейтинг книги
Отцы-основатели. Весь Саймак - 10.Мир красного солнца

Хранители миров

Комаров Сергей Евгеньевич
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Хранители миров

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Игрушка для босса. Трилогия

Рей Ольга
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Игрушка для босса. Трилогия

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Жития Святых (все месяцы)

Ростовский Святитель Дмитрий
Религия и эзотерика:
религия
православие
христианство
5.00
рейтинг книги
Жития Святых (все месяцы)

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон