Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

3. Увеличение чувствительности постсинаптической мембраны.

4. Увеличение проводимости дендритных шеек. Саму идею о том, что изменение проводимости дендритных шеек лежит в основе изменения синаптических весов, высказали [1612] за два года до Лёмо и Блисса Уилфред Ролл и Джон Ринцель. Сегодня их имена увековечены в названиях ряда моделей биологического нейрона, таких как модель Ролла (другое название кабельной теории дендритов), модель Фитцхью — Ринцеля (FitzHugh—Rinzel, FH-R) (усовершенствованная версия модели Фитцхью — Нагумо) [1613] , а также модель Пинского — Ринцеля (нелинейная двухкомпартментная модель пирамидальных клеток CA3) [1614] .

1612

Rall W., Rinzel J. (1971). Dendritic spine function and synaptic attenuation calculations / Program and Abstracts: Society for Neuroscience First annual meeting, p. 64

1613

Zemlyanukhin A. I., Bochkarev A. V. (2019). Analytical Properties and Solutions of the FitzHugh—Rinzel Model / Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 1, pp. 3–12 // https://doi.org/10.20537/nd190101

1614

Rahimian E., Zabihi S., Amiri M., Linares-Barranco B. (2017). Digital Implementation of the Two-Compartmental Pinsky-Rinzel Pyramidal Neuron Model / IEEE Transactions on Biomedical Circuits and Systems, 2018-Feb; 12(1):47-57 // https://doi.org/10.1109/TBCAS.2017.2753541

Лёмо

и Блисс писали, что у них нет доказательств, позволяющих предпочесть один из четырёх описанных выше механизмов. Интересно, что современные научные данные свидетельствуют в пользу того, что задействованы все четыре. Первый связан с прорастанием новых дендритных шипиков, что приводит к росту числа синаптических контактов [1615] , [1616] . Второй — с увеличением числа везикул (крошечных внеклеточных пузырьков), содержащих нейротрансмиттеры, и вероятности их высвобождения в синаптическую щель [1617] . Третий связан с увеличением количества рецепторов на постсинаптической мембране, а также ростом их активности [1618] , [1619] . Причём речь не только о NMDA-рецепторах, но и о других рецепторах глутамата, таких как ионотропные АМРА-рецепторы (рецепторы ?-амино-3-гидрокси-5-метил-4-изоксазолпропионовой кислоты) [1620] и метаботропные глутаматные рецепторы (mGluR) [1621] . Последние, в отличие от «быстродействующих» ионотропных рецепторов, обеспечивают медленную реакцию на опосредованные глутаматом (глутаматергические) сигналы. Они активируют внутриклеточные сигнальные реакции, ведущие к модификации других белков, например тех же ионных каналов. Четвёртый механизм связан с изменением морфологии дендритных шеек [1622] .

1615

Lynch M. A. (2004). Long-term potentiation and memory / Physiological Reviews, Vol. 84, Iss. 1, pp. 87—136 // https://doi.org/10.1152/physrev.00014.2003

1616

Segal M., Murphy D. D. (1999). CREB activation mediates plasticity in cultured hippocampal neurons / Neural Plasticity, Vol. 6, Iss. 3, pp. 1—7 // https://doi.org/10.1155/NP.1998.1

1617

Emptage N. J., Reid C. A., Fine A., Bliss T. V. (2003). Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses / Neuron, Vol. 38, Iss. 5, pp. 797—804 //00325-8

1618

Tang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G., Tsien J. Z. (1999). Genetic enhancement of learning and memory in mice / Nature, Vol. 401 (6748), pp. 63—69 // https://doi.org/10.1038/43432

1619

Tang Y., Wang H., Feng R., Kyin M., Tsien J. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice / Neuropharmacology, Vol. 41, Iss. 6, pp. 779—790 //00122-8

1620

Malinow R. (2003). AMPA receptor trafficking and long-term potentiation / Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 358 (1432), pp. 707—14 // https://doi.org/10.1098/rstb.2002.1233

1621

Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches / Neuron, Vol. 44, Iss. 1, pp. 5—21 // https://doi.oeg/10.1016/j.neuron.2004.09.012

1622

Araya R., Vogels T. P., Yuste R. (2014). Activity-dependent dendritic spine neck changes are correlated with synaptic strength // PNAS, Vol. 111, Iss. 28, pp. E2895—E2904 // https://doi.org/10.1073/pnas.1321869111

Ажиотаж, вызванный открытием синаптической пластичности в гиппокампе, вызвал настоящую лавину исследований. Дуглас и Годдард в 1975 г. показали [1623] , что быстро повторяющиеся импульсы были более эффективными в вызове (индукции) ДВП, чем одиночное длинное (так называемое тетаническое) возбуждение. Это было важной вехой в истории изучения синаптической пластичности не только потому, что повторяющиеся короткие импульсы стали популярным способом для вызова ДВП, но также и потому, что была продемонстрирована важность повторных и постоянных периодов стимуляции для индукции ДВП, что вполне подтверждало догадки Хебба и других пионеров нейрофизиологии. Дуглас и Годдард также ввели сам термин ДВП (LTP), отталкиваясь от предложения Пера Андерсена. Множество экспериментальных и теоретических исследований, вызванных к жизни новыми открытиями, было направлено на то, чтобы проверить различные аспекты постулата Хебба и выявить конкретные механизмы, лежащие в основе синаптической пластичности. Активные споры велись по поводу того, лежат ли в её основе пре- или постсинаптические изменения или же синапсы могут изменяться разными способами.

1623

Douglas R. M., Goddard G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus / Brain Research, Vol. 86, Iss. 2, 21-Mar-1975, pp. 205—215 //90697-6

Следующий важный шаг в расширении знаний о синаптической пластичности сделал Брюс Макнафтон, будущий научный руководитель будущего нобелевского лауреата Эдварда Мозера, подарившего нам знание о «нейронах решётки» (системе клеток в мозге, которая позволяет ориентироваться в пространстве). Макнафтон показал, что в случае одновременной тетанической стимуляции двух нервных путей может происходить ДВП, которая не происходит при их неодновременной стимуляции аналогичными импульсами («нервный путь», или «проводящий путь» [neural pathway], — цепочка нейронов, обеспечивающая проведение одинаковых нервных импульсов в определённом направлении). Данный эффект обусловлен совместным действием нервных путей [1624] . Это стало важным подтверждением идеи Хебба о клеточных ансамблях, в которых возбуждение одного нейрона приводит в возбуждение весь ансамбль и благодаря которым компоненты воспоминания могут усиливать друг друга и даже укреплять другие связанные воспоминания. Макнафтон и его соавторы были также, вероятно, первыми, кто экспериментально исследовал важность нахождения постсинаптического и пресинаптического импульсов в близком временном интервале.

1624

McNaughton B. L., Douglas R. M., Goddard G. V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents / Brain Research, 1978 Nov 24; 157(2):277-93 //90030-6

Примерно в это же время Гэри Линч и его коллеги обнаружили явление ДВД в гиппокампе: в то время как тетаническая стимуляция вызывала ДВП активированного нервного пути, неактивированный нервный путь подвергался ДВД (гетеросинаптическая ДВД) [1625] . Кроме того, они обнаружили, что ДВД постепенно происходит и в самом активированном нервном пути, если он редко подвергается активации (гомосинаптическая ДВД) [1626] . В психологическом плане это явление можно рассматривать как нейронный механизм постепенного угасания воспоминаний [1627] .

1625

Lynch G. S., Dunwiddie T., Gribkoff V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation / Nature, Vol. 266, pp. 737—739 // https://doi.org/10.1038/266737a0

1626

Dunwiddie T., Lynch G. (1978). Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency / The Journal of Physiology, Vol. 276, pp. 353—367 // https://doi.org/10.1113/jphysiol.1978.sp012239

1627

Markram H., Gerstner W., Sjostrom P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

В 1982

г. в работе [1628] Масао Ито и его коллег было показано существование гетеросинаптической ДВД параллельных волокон в мозжечке, вызываемой их одновременной активацией. Некоторые исследователи в наши дни считают, что параллельные волокна передают в обратном направлении сигналы для коррекции эффективности синапсов. Не забудьте упомянуть эту работу, когда будете троллить знакомого нейрофизиолога вопросом о наличии в мозге механизма для обратного распространения ошибки. К слову сказать, мозжечок является очень важной частью нервной системы. Хотя он занимает у человека всего около 10% объёма головного мозга, на долю этого отдела приходится около 80% его нейронов! [1629] В соответствии с современными научными представлениями в хитросплетениях связей нервных клеток мозжечка закодированы модели всего, с чем на протяжении жизни сталкивается двигательная система организма [1630] , [1631] .

1628

Ito M., Sakurai M., Tongroach P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells / The Journal of Physiology, Vol. 324, pp. 113—134 // https://doi.org/10.1113/jphysiol.1982.sp014103

1629

Herculano-Houzel S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain / Frontiers in Human Neuroscience, Vol. 3, Iss. 21, 2009 // https://doi.org/10.3389/neuro.09.031.2009

1630

Марков Д. (2021). Удалось увидеть, как в мозжечке личинок данио-рерио строятся модели взаимодействия тела с внешним миром / Элементы, 17.12.2021 // https://elementy.ru/novosti_nauki/433910/Udalos_uvidet_kak_v_mozzhechke_lichinok_danio_rerio_stroyatsya_modeli_vzaimodeystviya_tela_s_vneshnim_mirom

1631

Markov D. A., Petrucco L., Kist A. M., Portugues R. (2021). A cerebellar internal model calibrates a feedback controller involved in sensorimotor control / Nature Communications, Vol. 12, 2021 // https://doi.org/10.1038/s41467-021-26988-0

В 1983 г. Освальд Стюарт и Уильям Леви исследовали [1632] влияние на синаптическую пластичность относительной синхронизации в пределах нескольких миллисекунд потенциалов пре- и постсинаптического действия. Для этого они взяли два нервных пути, оканчивающихся в одном постсинаптическом нейроне, — «слабый» и «сильный», то есть с меньшей эффективностью и с большей, — и вызывали в них стимулы, варьируя время вызова импульса. Хотя им и удалось обнаружить в опытах существенную асимметрию: активация слабого нервного пути раньше сильного вызывала ДВП в слабом нервном пути, в то время как активация сильного нервного пути раньше слабого вызывала ДВД в слабом нервном пути, но авторы, как и многие другие исследователи в 1980-е гг., не усмотрели в этом явлении системы.

1632

Levy W. B., Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus / Neuroscience, Vol. 8, Iss. 4, April 1983, pp. 799—808 //90011-8

В 1990 г. немецкий исследователь Вольф Зингер и его коллеги сообщили [1633] , что наступление ДВП или ДВД обусловлено гиперполяризацией или деполяризацией постсинаптического нейрона (напомним, что гиперполяризация — это смещение мембранного потенциала относительно потенциала покоя в более отрицательную сторону, а деполяризация — в положительную). ДВП происходит, если после стимуляции мембранный потенциал постсинаптического нейрона не достигает определённого порога («критический уровень деполяризации»), а ДВП происходит, если данный порог достигается, ввиду чего происходит последующая гиперполяризация.

1633

Artola A., Brocher S., Singer W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex / Nature, Vol. 347, pp. 69—72 // https://doi.org/10.1038/347069a0

Рис. 115. Зависимость мембранного потенциала от времени, прошедшего после стимуляции

Это исследование привлекло внимание к более пристальному изучению постсинаптического нейрона, поскольку именно его мембранный потенциал является ключевым для ДВП или ДВД, которые необязательно зависят от поступления сигнала через входящий синапс [1634] . Четырьмя годами спустя Доминик Дебанн и его коллеги сделали [1635] ещё один шаг вперёд: они вначале направляли деполяризующие импульсы тока непосредственно в постсинаптический нейрон, меняя его мембранный потенциал, а потом стимулировали нервный путь. Их исследования показали, что при небольшой разнице по времени между искусственной деполяризацией и входными импульсами происходит ДВП, а при большой — ДВД. Это добавило к исследованию Зингера тот факт, что именно уровень деполяризации и гиперполяризации, вызванный каким-либо образом (даже искусственно), и определяет направление синаптической пластичности.

1634

Markram H., Gerstner W., Sjostrom P. J. (2011). A history of spike-timing-dependent plasticity / Frontiers in synaptic neuroscience, 3, 4 // https://doi.org/10.3389/fnsyn.2011.00004

1635

Debanne D., Gahwiler B. H., Thompson S. M. (1994). Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro / Proceedings of the National Academy of Sciences of the United States of America, Vol. 91 (3), pp. 1148—1152 // https://doi.org/10.1073/pnas.91.3.1148

Наконец, в 1991 г. Роберто Малиноу провёл завершающее исследование. Он смог в тонком срезе гиппокампа выделить четыре пары пирамидальных нейронов CA3 и CA1, каждая из которых была связана через единственный синапс. Затем он, одновременно вызывая серии импульсов в пре- и постсинаптическом нейронах, получил ДВП в этих соединениях [1636] . Эта работа стала первой (спустя более сорока лет после выхода в свет ключевой работы Хебба!) прямой демонстрацией того, что синаптические связи между двумя нейронами могут изменяться, ведь здесь удалось полностью исключить влияние на ход эксперимента сторонних воздействий.

1636

Malinow R. (1991). Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP / Science, Vol. 252, Iss. 5006, pp. 722—724 // https://doi.org/10.1126/science.1850871

Поделиться:
Популярные книги

Потусторонний. Книга 1

Погуляй Юрий Александрович
1. Господин Артемьев
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Потусторонний. Книга 1

Николай I Освободитель. Книга 5

Савинков Андрей Николаевич
5. Николай I
Фантастика:
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 5

Эволюционер из трущоб. Том 3

Панарин Антон
3. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
6.00
рейтинг книги
Эволюционер из трущоб. Том 3

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Шайтан Иван 3

Тен Эдуард
3. Шайтан Иван
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Шайтан Иван 3

Тагу. Рассказы и повести

Чиковани Григол Самсонович
Проза:
советская классическая проза
5.00
рейтинг книги
Тагу. Рассказы и повести

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Том 13. Письма, наброски и другие материалы

Маяковский Владимир Владимирович
13. Полное собрание сочинений в тринадцати томах
Поэзия:
поэзия
5.00
рейтинг книги
Том 13. Письма, наброски и другие материалы

Семь Нагибов на версту

Машуков Тимур
1. Семь, загибов на версту
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Семь Нагибов на версту

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Сочинения в двух томах

Майков Аполлон Николаевич
Поэзия:
поэзия
5.00
рейтинг книги
Сочинения в двух томах

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Тринадцать полнолуний

Рок Эра
Религия и эзотерика:
прочая религиозная литература
эзотерика
6.00
рейтинг книги
Тринадцать полнолуний

Отрок (XXI-XII)

Красницкий Евгений Сергеевич
Фантастика:
альтернативная история
8.50
рейтинг книги
Отрок (XXI-XII)